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Abstract

We investigate, in a simple bilateral bargaining environment, the extent to
which asymmetric information can induce individuals to engage in exchange
where trade is not mutually profitable. We first establish a no-trade theorem
for this environment. A laboratory experiment is conducted, where trade is
found to occur between 16% and 32% of the time, depending on the specific
details of the environment and trading mechanism. In most cases, buyers
gain from such exchange, at the expense of sellers. An equilibrium model
with naive, or ”cursed,” beliefs accounts for some of the behavior findings,
but open questions remain.
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1 Introduction

Understanding the effects of private information on trading behavior is cen-
tral to the study of markets, especially markets for risky assets. The present
paper investigates whether, in the context of an extremely simple trading
environment, asymmetric information can induce individuals to engage in
exchange where trade is not mutually profitable. The question is interesting
because, a priori, it seems unclear which trading behavior should be ex-
pected in a controlled environment. On the one hand, no-trade theories are
robust and intuitive, so one might think that individuals should realize (or
learn) the negative implications associated to the acceptance of an offer to
trade. On the other hand, some experimental studies in other asymmetric
information contexts (such as adverse selection markets and common value
auctions) suggest that individuals do not fully comprehend that the actions
of other players depend on their information.

To study this problem, we consider a simple two-person bargaining game
with two-sided private information. One individual (the seller) is endowed
with one unit of an asset. Another individual (the buyer) can acquire it if
both agree on a price for the transaction. The asset is of pure common value
and each individual has a private signal about this value. We assume that
if agents pool their information, there is no residual uncertainty about the
asset value. As a result, there cannot be trade for insurance or risk-sharing
motives. Trading for pure informational reasons is not possible either, for
the same reasons as in standard no-trade theorems: both agents cannot
benefit from trade, so accepting the other agent’s terms implies that one’s
end of the deal must be ex-post unfavorable. Therefore, standard theory
predicts that trade should never occur in our environment.

We consider variations of the game in two dimensions: the value of the
asset can be the average, the minimum or the maximum of both signals
(from now on labeled ”ave”, "min” and "max” treatments), and the trad-
ing mechanism can be either a seller’s take-it-or-leave-it price or a double
auction, where trade occurs at the seller’s price whenever the buyer’s bid
exceeds it (from now on, "price” and ”auction” treatments).

Our experiment delivers two findings that are common to all treatments.
First and contrary to the theoretical prediction, we observe substantial
trade, with probabilities ranging from 16% to 32% depending on treatments.
This amount of exchange is all the more considerable if we note that trade
only occurs between 3.3% and 15.3% whenever the seller’s signal exceeds
the buyer’s signal. Second, in almost all cases sellers suffer from adverse se-
lection: they would earn substantial profits if the behavior of buyers did not



depend on their information but, since it does, they end up making losses;
given the zero sum nature of the transaction, buyers reap substantial gains
from the adverse selection.

There are also interesting findings about differences in behavior across
treatments. Buyers and sellers both adapt their strategy to changes across
the asset value function. In particular, seller prices and buyer bids both
increase as we move from min to ave and from ave to max. Behavior also
changes across mechanisms. In particular, the likelihood of trade is signifi-
cantly lower in the auction than in the price treatment. The difference comes
mostly (although not exclusively) from buyers, who submit bids in the auc-
tion treatment which are, on average, lower than the maximum offer prices
they accept in the price treatment. Interestingly, there is also little evidence
of learning. This suggests the phenomena we observe are robust: sellers are
consistently exploited by buyers, even though subjects gain experience in
both roles and the amount of feedback is considerable.!

As an attempt to understand these findings, we consider an alternative
model, the ”cursed equilibrium” (Eyster and Rabin, 2005), where the as-
sumption of full rationality of traders is relaxed. In particular, the model
posits that traders do not correctly take into account the statistical rela-
tionship between the private information and action of their rival — in the
extreme version we consider, they behave as if there is no relationship at all.
In the context our model, we show that traders with such belief fallacies are
vulnerable to accepting or offering unfavorable terms of trade.

In addition, we show that in a world populated by traders, all suffering
this fallacy, outcomes will be systematically biased. Moreover, the severity
and magnitude of the bias depends on the common value function. This
is consistent with our main findings. For the price mechanism, the buyers’
acceptance decision, the sellers’ price function and the trade frequencies
predicted by the cursed equilibrium model all match up reasonably well with
the data. We conjecture the same will be true with the auction mechanism,
but have been unsuccessful in solving analytically for the cursed equilibrium
in that mechanism.

Related literature: Theory. Milgrom and Stokey (1982) and Tirole
(1982) establish that, in equilibrium, rational individuals will not trade for
purely informational reasons. More specifically, if fully rational agents have

IFor example, in the auction treatments sellers observe the bid of the buyer they are
paired with and, at the end of each round, learn the signal of that buyer. The same applies
to buyers.



common prior beliefs and the existing asset allocation is Pareto optimal (say,
as the result of previous trading), then new private information to some or
all agents in the economy will not induce trade. The logic is simple. Traders
who receive private information have the marginal valuation for their asset
allocation modified. However, without insurance or transaction motives for
trading, every agent realizes that a transaction beneficial for someone must
necessarily be detrimental for someone else. Thus, the acceptance of the
terms of a trade is evidence that the deal must be unfavorable.

This ”"no-trade theorem” has been extended in a number of directions.
For example, Morris (1994) identifies conditions under which no-trade occurs
even if individuals have heterogeneous prior beliefs. Blume et al. (2006) show
that the no-trade result applies to competitive markets if and only if markets
are complete. Serrano-Padial (2007) demonstrates that it holds under more
general bilateral trading mechanisms.

From a theoretical viewpoint, our framework is also related to the lit-
erature on bargaining with private information. In a private value setting
with two-sided private information, it has been shown that trade occurs
when the seller’s valuation is sufficiently lower than the buyer’s valuation.
This means, in particular, that full efficiency cannot be achieved and that
asymmetric information prevents the realization of some profitable trades.?
In a common value setting with sequential offers, Evans (1989) and Vincent
(1989) show that one-sided private information also leads to inefficiently low
trading. Instead, our experimental results imply the opposite observation:
the introduction of asymmetric information leads to trade in contexts where
we should observe none. Finally, our no-trade result bears some resemblance
with the well-known idea that information may impede the realization of mu-
tually beneficial agreements, as was first emphasized by Hirshleifer (1971).

Related literature: Experiments. Constant sum games with two-sided
private information, of which bargaining with common values is a special
case, have rarely been studied in the laboratory. A possible reason is the
difficulty to find simple games that subjects can easily understand and play.
Because of the signaling nature of these games, one would also want to
identify games that have one or few equilibria which can be determined
analytically, in order to compare the empirical behavior with the theoretical

2See e.g. Chatterjee and Samuelson (1983) in the context of a double auction and
Myerson and Satterthwaite (1983) in a generalized bargaining game. Radner and Schotter
(1989) study the Chatterjee and Samuelson model of private-values bargaining in the
laboratory. Cramton et al. (1987) show that initial ownership is crucial to determine
whether efficiency can be achieved.



predictions. The bargaining games we study here satisfy these criteria.

An exception is the compromise game (Carrillo and Palfrey, 2006), where
two agents with private signals choose between two actions, "fight” and
"retreat”. If at least one agent fights, the agent with highest signal receives
a high payoff and the other receives a low payoff. If both retreat, they each
get an intermediate payoff. The betting game (Sonsino et al. (2001), Sovic
(2004), Camerer et al. (2006)) is also related, although only the simultaneous
version has been studied. In that game, agents with private information
about the state of the world choose whether to bet on an asset, whose value
for one agent is always the negative of the value for the other. Agents
get these values if both bet and they get zero otherwise. As in our game,
these studies find substantial retreating and betting, although the theoretical
prediction is that it should never occur. In these two games, however, the
sharing rule (intermediate payoff, payoff if betting) is exogenously fixed.
Instead, we are interested precisely in how subjects set transaction prices
(bids and offers) as a function of (i) their private information, (ii) their role,
(iii) the value function, (iv) the trading mechanism, and (v) the timing of
the game.

A number of studies have compared behavior between a game played in
its extensive form and an equivalent version of the game played in (some-
times reduced) strategic form. The latter, called ”the strategy method”, is
sometimes employed in experimental designs in order to obtain more be-
havioral data (Selten, 1967). The modal finding in these comparisons is
that behavior is significantly different when games are played sequentially
or simultaneously, but generally the differences are small.> Several pos-
sible explanations have been proposed for these differences, although the
phenomenon remains poorly understood.*

Our study also relates to the winner’s curse problem in common value
auctions (reviewed in Kagel and Levin, 2002) and adverse selection in lemons
markets (Samuelson and Bazerman, 1985).> Under some conditions, players
do not seem to fully realize that the choices of other players in the game
depend on their information, but these distortions diminish significantly
with experience.

3See, for example, Schotter et al. (1994), Coughlan et al. (1999), Brosig et al. (2003),
and Oxoby and McLeish (2004).

“McKelvey and Palfrey (1998) show that quantal response equilibrium behavior will
generally produce some differences across ”equivalent” game forms.

5 Although related, these two environments are actually quite different. In particular,
note that the first one is a simultaneous game with multi-sided private information whereas
the second one is a sequential game with one-sided private information.



2 The model

The trading game can be formalized as follows. An asset is to be divided
among two agents, 1 and 2. Agent 1, the seller, possesses the asset. Agent 2,
the buyer, can acquire it if they mutually agree on a price. The asset has a
common value to both agents, and each has a signal, denoted by s and b for
the seller and buyer, respectively. The common value v(s,b) is a commonly
known function of the signals, s and b. There are many possible bargaining
mechanisms that might apply is these environments. The simplest trade
mechanism is one in which the seller sets a take-it-or-leave-it price, which
is accepted or rejected by the buyer. A natural alternative, which is strate-
gically equivalent, is a seller-price double-auction, where seller and buyer
simultaneously quote price and bid, and the transaction is executed at the
seller’s price if and only if the bid weakly exceeds the price. In these mech-
anisms the total surplus v(s,b) is fixed but the splitting rule (trading price)
is endogenously determined. We assume s and b are private information
for seller and buyer, respectively. More precisely, s € S and b € B with
commonly known c.d.f. Fs(s|b) and Fy(b|s), possibly different and possibly
correlated. We assume strictly positive densities fs(s|b) and fy(b|s) for
all s and b. We also restrict attention to monotone value functions, i.e.,
0v(s,b)/0s > 0 for all b and Jv(s,b)/0b > 0 for all s. Last, we assume that
the utility of the seller, us(z), and the utility of the buyer, uy(y), are strictly
increasing in their own payoff « and y, that is, uj(z) > 0 and uy(y) > 0.
These utility functions are not necessarily the same. Moreover, we allow for
risk-averse and risk-loving utilities (v 2 0 and u; 2 0).

This class of environments does not satisfy the conditions for no-trade
described in Milgrom and Stokey (1982). In particular, the initial allocation
is not Pareto optimal if the seller is more risk-averse than the buyer for
all relevant levels of wealth. Therefore, we cannot apply existing no-trade
theorems. Nevertheless, a no trade property can be proved, summarized in
the proposition below.

Proposition. In equilibrium, there can never be trade.

Proof. Assume that, in case of indifference, agent 2 does not trade. Suppose
there exists a price p such that for all s € S € S agent 1 offers the good at
price p and for all b € B(S) € B agent 2 accepts to trade at that price. Let
5 = maX g and b = min beB(S)- Agent 2 accepting p implies that:

/esub(v(s,b)—p)dFs(s |se€S)>up(0) Ybe B(S) = w(v(s,b)—p) > up(0)



Similarly, agent 1 offering p implies that:
us(p) > / us(v(s,b))dFy(b|be B(S)) Vse€S = us(p) = us(v(s,b))
beB(S)

which contradicts the previous strict inequality. If, in case of indifference,
agent 2 accepts, we might observe trade but only in trivial cases (e.g., p = k
and v(s,b) = k for all (s,b)) or in probability-zero events (agent 1 with
signal s* = ming S sets price p = v(s*,b*) which is accepted only by an
agent 2 with signal b* = max, B). A similar proofs extends to other type
of bargaining mechanisms. O

The intuition is straightforward. At the stage where individuals can
trade, each agent has incomplete information, but there is no residual uncer-
tainty about the value of the asset (formally, v(+) is a deterministic function
of s and b). Therefore, trading for insurance or risk-sharing motives is not an
option, despite the possible differences in the agents’ risk-tolerance. Because
of their different private information, agents will hold different beliefs about
the value of the asset. This could, in principle, generate trade. However, the
proposition shows that rational agents will not agree to trade on the basis
of private information alone. The reason is the same as in standard no-
trade theorems. Indeed, any deal beneficial for one player must necessarily
be hurtful for the other. Both agents anticipate this simple fact and form
expectations accordingly. As a result, one agent must always disapprove the
terms of the trade. Because trade only occurs under mutual agreement, this
is enough to break any deal.

The simplicity of the argument makes it also very robust: as long as we
keep the deterministic and common value nature of the asset, extending the
game in other dimensions will not change the no-trade outcome. In partic-
ular, allowing counter-offers, divisibility of the asset or more sophisticated
trading mechanisms will not induce agents to trade. By contrast, it is also
easy to see why the absence of residual uncertainty on the asset’s value is
important. Indeed, if this was not the case, incentives to trade for insurance
or risk-sharing motives may be present after the revelation of information
and could outweigh the adverse selection problem.®

6To grasp the intuition, imagine the limit situation where s and b provides almost no
information about the value of the asset. The adverse selection effect would be minimal
so if the seller were more risk-averse than the buyer, they would both gain from trading.



3 Laboratory experiments

3.1 Implementation of the game

We specialize the environment for the laboratory in the following ways.
First, the private information signals, s and b, are independent draws from
identical, uniform distributions. We obtain data for both the take-it-or-
leave-it pricing mechanism (or ”price”) and the seller-price double auction
(or "auction”). When there is no trade, the payoff of the buyer is 0 and
the payoff of the seller is v(s,b) under either mechanism. When there is
trade, the payoff of the buyer is the value of the asset minus the price paid,
v(s,b) — p, and the payoff of the seller is the price obtained, p.

Under both mechanisms the action of the buyer determines only whether
there is trade, so seller behavior should be the same in equilibrium in both
mechanisms. Furthermore, the buyer bidding behavior in the auction mech-
anism should be isomorphic to their acceptance strategy in the price mech-
anism. Hence the only real difference between the two mechanisms lies in
the timing: sequential (price mechanism) vs. simultaneous (auction mecha-

nism).
For the asset value function, we obtain data for three cases: average
of signals (v(s,b) = 1), minimum of signals (v(s,b) = min{s,b}), and

maximum of signals (v(s,b) = max{s,b}).

3.2 Experimental design and procedures

We conduced 7 sessions with a total of 86 subjects. The subjects were
registered Princeton students who were recruited by email solicitation, and
all sessions were conducted at The Princeton Laboratory for Experimental
Social Science. All interaction between subjects was computerized, using
an extension of the open source software package, Multistage Games.” No
subject participated in more than one session. In each session, subjects
made decisions over 20 rounds. Each subject played exactly one game with
one opponent in each round, with random rematching after each round.

At the beginning of each round, each subject was randomly assigned
a role as either seller or buyer, and assigned a new signal, s or b. Signals
were integer numbers drawn independently with replacement from a uniform
distribution over [0, 100]. Each subject observed his own signal, but did not
observe the opponent’s signal. The distribution was common knowledge.

"Documentation and instructions for downloading the software can be found at
http://multistage.ssel.caltech.edu.



The common value was computed as a deterministic function of the two
signals, using either the average, minimum, or maximum. The value function
was held constant within a session.®

In the price variant, the seller offered the asset for a price, p, which
was limited to integer numbers in the range of possible values of the asset,
[0,100]. The buyer then decided whether to accept or reject the offer, and
payoffs for that round accrued accordingly. In the auction variant, buyer
and seller simultaneously quoted bid and ask prices also limited to integer
numbers in the range of possible values of the good. Trade occurred at the
seller’s price if and only if the bid weakly exceeded the ask price. In either
case, players learned at the end of each round the signal and decision of
their opponent. Finally, subject computer screens included a table with the
history of behavior, signals, and outcomes in previous rounds.

At the beginning of each session, instructions were read by the exper-
imenter standing on a stage in the front of the experiment room, which
fully explained the rules, information structure, and client GUL® After the
instructions were finished, two practice rounds were conducted, for which
subjects received no payment. After the practice rounds, there was an in-
teractive computerized comprehension quiz that all subjects had to answer
correctly before proceeding to the paid rounds. The subjects then partici-
pated in 20 paid rounds, with opponents, roles (seller or buyer), and signals
randomly reassigned at the beginning of each round. The trading mech-
anism and the common value function were held constant throughout all
rounds of a session. Subjects were paid the sum of their earnings over the
20 paid rounds, in cash, in private, immediately following the session.

4 Results

4.1 Aggregate behavior and payoffs

The first cut at the data consists of comparing the prices, likelihood of
trade and realized gains of buyers and sellers in the different treatments,
without conditioning on the actual draws of s and b. Table 2 shows average
choices for the ave, min and max value functions under the price and auction
mechanisms.

8The average treatments were framed as the sum of the two signals, rather than the
average, to make the instructions simpler. This only results in a rescaling of all strategies
and payoffs.

A sample copy of the instructions and sample subject GUI screens can be downloaded
from http://www.hss.caltech.edu/ trp/notrade.



Value ave min max

Mechanism price auction price auction price auction

# observations (260) (120) (120) (120) (120) (120)
Average seller price 615 (19.7) 625 (21.3) 474 (204) 53.0 (202) 788 (17.7) 742 (17.2)
Average buyer bid — 416 (149) — 24.6  (20.3) — 53.5  (22.5)
Frequency of trade (%) 31.9 26.7 24.2 16.7 30.8 21.7

Seller gain given trade -4.6  (14.5) 4.2 (13.1) -54 (19.7) 7.7 (12.2) -7.8 (23.3) -12.8 (21.9)
Seller gain LEFE(84)  -L1* (7.0) <13 (9.8)  1.3%F (5.6) -2.4%F (13.3) -2.8%F (11.3)
Gain if all traded 13.9 (22.3) 9.8 (21.6) 151 (25.8) 194 (22.3) 120 (258) 8.1 (22.6)

Table 2. Average choices and trade probabilities. Standard deviations in parenthesis.
** — gignificant at 5%; * = significant at 10%.

Result 1 There is substantial trade in all treatments.

In approximately half of our observations, the buyer’s signal is below the
seller’s signal. These are situations with essentially no chance for trade even
with completely naive behavior, implying a natural upper bound of 50%
on the amount of trade. Yet we observe trade between 16.7% to 31.9% of
the time, depending on the treatment. Thus, trade occurs roughly between
one-third and two-thirds of the time when b > s.

Result 2 On average, sellers lose and buyers gain from trade.'°

Sellers’ offer prices would, on average, earn them non-negligible profits if
buyer acceptance decisions were uncorrelated with buyer signals. However,
since buyers condition their decision on their information, and are more
likely to accept when their signal is higher, sellers end up incurring net losses
in 5 out of the 6 treatments. As an immediate consequence, and abstracting
from endowment considerations, it would be preferable in this game to be
a buyer than a seller.!! This is especially surprising in the ave and min
cases. Indeed, in those two treatments, a rational and cautious seller has
at his disposal a strategy to induce a boundedly rational buyer to trade
and at the same time guarantee no losses, by setting prices p = § + 50 and
p = s, in the ave and min cases respectively. In fact, given the behavior of

100\ [ore accurately, traders lose money on average in the role of sellers, and gain money on
average in the role of buyers (recall that each individual trader was a seller approximately
half the time and a buyer the rest of the time).

Since the seller is, by assumption, endowed with the good, his final payoff is greater
than that of the buyer if there is no trade (v(s,b) vs. 0). We define profit in net terms,
so the comparison is between the incremental utility of buyers and sellers, which is zero
in case of no trade.



buyers this would actually generate positive profits. Thus, sellers are clearly
not maximizing payoffs, given the behavior of buyers. It is, of course, more
difficult to evaluate whether buyers are doing as well as they can given seller
behavior because the buyers are making some money.

To understand this better, we look at gains and losses as a function of
the realized private information. The left column in Figure 1 displays for
the price treatments, the potential —positive or negative— net gain of sellers
(price minus value of the asset) as a function of the seller’s signal, where
each dot is one observation. It also shows whether the terms of the trade
were accepted and thus the net gains realized (light circle) or not (dark
triangle). The right column in Figure 1 displays the same information from
the buyer’s viewpoint for the auction treatments: the net loss of buyers,
which is equivalent to the net gain of sellers, as a function of the buyer’s
signal. The treatments that are not graphically represented follow similar
patterns.

[ FIGURE 1 HERE |

The figures in the left column clearly illustrate the adverse selection
effect. Although the expected gains would be positive if the behavior of
buyers were uncorrelated with their information, they are generally negative
once we condition on the buyers’ actual decisions, that is, when we look only
at the light circle dots. More interestingly, we notice that the biggest losses
occur when the signal of sellers are high in the min treatment and low in the
max treatment. Indeed, these are the cases where the dispersion of prices
is highest and therefore the selective acceptance of buyers has the largest
impact on payoffs.

The picture for buyers is different. Buyers rarely trade when their signal
is below 50 and, if they do, they generally incur losses. Also, in the ave and
max treatments under the price mechanism, buyers cannot make losses by
trading whenever p < % and p < b, respectively. In the data, 12% of the
trades accepted in the ave treatment and 73% of the trades accepted in the
max treatment satisfy this inequality. This explains why the gains of buyers
are higher in the max than in the other two value treatments. The patterns
are similar in the auction treatments as depicted in Figure 1.

Result 3 Behavior differs across asset value treatments: asking prices and
bids increase from min to ave and from ave to maz.

The seller’s price and the buyer’s bid all increase from min to ave and
from ave to max, as expected. It is easy to see that the expected value of

10



the asset conditional on an agent’s signal also increases from min to ave and
from ave to max. This suggests that players exhibit some level of rationality
with respect to the asset value function. Note also that the variance is
important, mainly because choices are greatly affected by signals. As a
result the average differences are sizeable but not statistically significant.
The average differences between bid and ask prices are of similar order across
auction treatments (between 20.7 and 28.4). Also, the greatest losses for the
seller are incurred in the max treatment. This is somewhat expected since it
is the most difficult problem for sellers: the only way to ensure no losses is to
set p = 100. It is also the easiest problem for buyers: by trading whenever
p < b, buyers are sure to get positive profits.

Result 4 Behavior differs across mechanisms: trading is consistently less
frequent under the auction than under the price mechanisms.

The difference in trade frequency between the two mechanisms is sub-
stantial. Trade under the auction mechanism is 16% less than under the
price mechanism in the ave treatment; 31% less in the min treatment; and
30% less in the max treatment. In the ave and max treatments, sellers set
roughly the same average prices in the two mechanisms. However, buyers
are more cautious in the auction mechanism. That is, their acceptance de-
cisions in the price mechanism are, on average, ”as if” they were bidding
more aggressively than we observe them doing in the auction mechanism.
This behavior does not result in higher profits for buyers, possibly because
sellers are equally exploited when buyers accept to trade. By contrast, sell-
ers in the min treatment increase prices in the auction mechanism relative
to the price mechanism, and buyer behavior does not change. This (barely)
reverses the sign of average seller gains for the min treatment from negative
in the price mechanism to positive in the auction mechanism.

4.2 Aggregate behavior and payoffs conditional on signals
4.2.1 Strategies of sellers

The picture presented so far is useful, but incomplete since it aggregates
across subjects’ private information. If subjects condition their decisions on
their private information, then such an analysis has left out an important
component of behavior.

The behavior of sellers can thus better be described as a mapping from
signal to price. We can graphically display the empirical strategies of sellers
and compare them across treatments. Figure 2 displays for each of the

11



6 treatments (ave-min-max and price-auction variants) the sellers’ asking
price as a function of their signal. Each dot in the graph is one observation.
Figure 2 also identifies cases where the prices resulted in a trade.

[ FIGURE 2 HERE |

As a natural benchmark for studying seller behavior, we use the Nash
equilibrium price correspondence. That equilibrium differs across value
treatments, but is the same for both mechanisms. The equilibrium price
correspondences are:

pe(s) € [5 +50,100] (ave)
Pe(s) € [s,100] (min)
pe(s) = 100 (max)

Note that equilibrium is characterized by a range of equilibrium prices for
the ave and min cases, and is a fixed constant p. = 100 in the max treatment.

Result 5 Seller pricing strategies are consistently below the Nash equilib-
TIUMN.

Seller pricing behavior coincides with Nash equilibrium play rather in-
frequently, particularly in view of the wide range of Nash equilibrium prices
in the ave and min treatments. In those two cases, prices are in the Nash
equilibrium range 26% and 57% of the time, respectively. In the max case,
only 8% of the observed prices are at the Nash equilibrium (p = 100). All
other prices are too low. Pooling across the three value treatments, sellers
set prices below Nash equilibrium about 70% of the time. The lower enve-
lope of these Nash equilibria are p = § + 50, p = s, and p = 100 in the ave,
min, and max treatments, respectively. In equilibrium, these prices should
yield no profit to the seller simply because they are too high to induce buy-
ers to trade. At the same time, they are high enough to guarantee profits if
a buyer (out of equilibrium) accepts. However, even zero or very low profits
would be an improvement over the losses sellers are incurring from the lower
prices they set in the experiment.

We also ran a simple OLS regression of seller price as a function of seller
signal and a constant term. The results are compiled in Table 3.

12



Value Mechanism  Constant Seller signal  adjusted R?
ave price 42.46 (2.19)  .386 (.039) 272
min  price 20.93 (3.24)  .356 (.057) 241
max  price 59.61 (2.84)  .366 (.048) .326
ave auction 39.85 (3.06)  .433 (.051) .376
min  auction 23.63 (2.31)  .558 (.038) .638
max  auction 52.82 (2.53)  .419 (.044) 432

Table 3. Seller price regression. Standard Errors in parenthesis.

Result 6 Seller prices: (1) are increasing in their signal; (2) vary across
value functions; and (3) are more responsive to signals in the auction than
in the price treatment.

Coefficients on the seller’s signal are highly positive and statistically
significant at the 99% level in every treatment. A one unit increase in s
translates into a .35 to .56 increase in p, depending on the treatment. Second,
the magnitudes of the constant term show that, as might be expected, prices
are typically highest in the max treatment and lowest in the min treatment.
Third, the response is greater in the auction than in the price treatments
(lower intercept and higher slope for all three value treatments). This leads
to prices that are, on average higher in the auction treatment, especially so
for high seller signals. This effect is especially strong in the min treatment.
Fourth, seller signal explains more of the variance in prices in the auction
treatment than in the price treatment. That is, the prices in the auction
treatment fit more tightly along the price-signal regression line.

The existence of these systematic differences suggests that sellers make
pricing decisions differently under the auction and price mechanisms, espe-
cially in the min treatment. This is in spite of the fact that, theoretically, the
trading mechanism should not affect their strategy. This must happen then
because sellers have different expectations about how buyers are behaving
in the price and auction treatments. As we will see in the next subsection,
this is indeed the case.

4.2.2 Strategies of buyers

We now turn to study the behavior of buyers. Their behavior can best be
described as a mapping from the pair (buyer’s signal, seller’s price) to a
probability of accepting the terms of trade in the price treatment, and as
a mapping from buyer’s signal to bid in the auction treatment. We can
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graphically display the empirical strategies of buyers and compare them
across treatments.

[ FIGURE 3 HERE ]

The left column in Figure 3 displays the accept/reject decision of buyers
as a function of their signal and the seller’s asking price, in all three price
treatments. The right column displays the buyers’ bid as a function of
their signal in all three auction treatments. It also displays whether the
bid resulted in trade or not. Finally and for comparative purposes with the
price treatment, the center column displays whether trade occurred in the
auction treatment at the seller’s asking price given the buyer signal.

In order to understand the behavior of buyers, we ran a probit regression
in the price treatments to compute the buyer’s probability of accepting the
trade as a function of the seller’s price and the buyer’s signal. For the auction
treatments, we ran an OLS regression of the buyer’s bid as a function of his
signal. The results are compiled in Tables 4a and 4b.

Value Mechanism Constant Seller price Buyer signal pseudo R?
ave price 747 (.396)  -.058 (.0082)  .041 (.0052) 462
min price -.366 (.453) -.037 (.0094) .023 (.0056) .283
max  price 673 (.692) -.036 (.0089) .029 (.0058) .357

Table 4a. Dependent Variable: Buyer’s acceptance decision (price mechanism).

Value Mechanism Constant Buyer signal adjusted R?

ave auction 23.51 (2.34)  .341 (.0392) .386
min  auction 11.25 (3.25)  .270 (.0563) 156
max  auction 32.09 (3.53) .426 (.0613) 284

Table 4b. Dependent Variable: Buyer’s bid (auction mechanism).

Result 7 Buyer decisions (acceptance or bids) are increasing in their sig-
nal.

All six buyer signal coefficients are positive and significant. Responsive-
ness to buyer signals is least in the case of the min treatment, for both the
price and auction mechanisms. Buyer behavior is also considerably more
noisy in the min treatment (lower R?).

To understand the choices of buyers at a deeper level we perform the
following analysis. Consider a model of buyer behavior where there exists
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a linear Acceptance Threshold Function (ATF) ¢ (b) such that a buyer with
signal b agrees to trade if and only if the asking price is p < ¥ (b). For any
hypothetical ATF, we use our data to construct a “misclassification score”
or MS for that function, for each value treatment and each mechanism. This
is done by adding up the number of misclassified observations (trade when
p > 1(b) or no trade when p < (b)) weighted by the magnitude of the mis-
classification (that is, the absolute difference between the actual price and
the cutoff price such that the observation would not be misclassified) divided
by the total number of observations. Table 5 reports the estimated ATF,
zZ(b), that minimizes the misclassification score. We also report the mini-
mized MS. This value reflects the average amount by which observations
are misclassified, with each correctly classified observation taking value 0.
Last, we determine the percentage of observations that are misclassified by
1 (b), which we call MO. Graphically, 1(b) corresponds to the best empirical
dividing line between trade vs. no trade regions.

For the price treatments, this analysis involves using all the available in-
formation (buyers observe their signal and the ask price and decide whether
to trade or not). In order to construct a comparable measure for the auc-
tion treatments, the only information used is whether trade occurred at the
asking price or not, rather than incorporating the additional information in
the buyer’s bid.

Value Treatment n (b) MS MO
ave price 22.8+0.55b 1.33 16.9%
ave auction 34.4+0.20b 0.54 11.7%
min price 15.8+0.31b 2.14 20.0%
min auction 19.2+0.26b 1.30 16.7%
max  price 39.4+0.56b 2.00 18.3%

max  auction 40.74+0.31b 2.27 20.0%
Table 5. Linear ATF estimation results.

Result 8 @E(b) s steeper in the price treatments than in the auction treat-
ments, which results in more trade.

For all three value treatments, the estimated classification line has a
higher slope and lower constant term in the price treatment than in the
auction treatment. In other words, buyers with high signals act in a more
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conservative way with the auction than with the price mechanism.'? Be-
cause trade rarely occurs when buyers have low signals, this behavior tends
to reduce trade. The result, combined with our previous findings about sell-
ers’ behavior, suggests that the reasons for a consistently lower likelihood
of trade in the auction variant is due to a different behavior by both buyers
and sellers. It is also worth noting that the reason for lower acceptance
rates comes exclusively from a lower sensitivity of bids to own signals (co-
efficient on b). Finally, the linear misclassification function ¥(b) performs
quite well across all treatments and mechanisms, with a range of 80% to
88% of observations correctly classified.

4.2.3 Trading probabilities

Our next look at the data consists in describing the relation between the
buyer-seller signal combinations and the likelihood of trade. Figure 4 plots
for each treatment and each (s,b) pair whether the outcome of the game is
trade (light circle) or no-trade (dark triangle).

[ FIGURE 4 HERE ]

Due to the deterministic and pure common value nature of the asset,
the region where trade should occur consists only of the (0,1) pair. As we
already know, this is not what is observed. Generally trade occurs when the
seller’s valuation (or signal) is sufficiently low and the buyer’s valuation (or
signal) is sufficiently high. The empirical likelihood of trade depending on
whether the buyer’s signal exceeds the seller’s signal or not is reported in
Table 6.

Value Treatment % trade given b <s % trade given b > s

ave price 10.6 57.6
min price 15.3 32.8
max  price 10.9 53.6
ave auction 3.3 50.0
min auction 3.1 32.1
max auction 10.2 32.8

Table 6. Likelihood of trade.

12This result is similar to the finding in the compromise game (Carrillo and Palfrey,
2006). In that experiment, subjects were less likely to agree to a compromise when they
acted as second movers than when the game was played simultaneously, even though
the Nash equilibrium prediction was identical in both variants. That paper provided an
explanation based on Quantal Response Equilibrium, although they might be some others.
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Result 9 Trade rarely occurs when the seller’s signal exceeds the buyer’s
signal. The probability of trade is increasing in the buyer’s signal and de-
creasing in the seller’s signal.

In three out six treatments, individuals engage in trade more than half
of the time whenever the buyer’s signal exceeds the seller’s signal. This is
particularly striking given that the no-trade theoretical prediction does not
dependent on the risk tolerance of individuals. In other words, since all that
matters for our theory is that utility is increasing in the subject’s monetary
payoff, risk-aversion, disappointment aversion or kinks in the utility function
could not account, even partially, for the observed outcomes.

We then ran a simple probit regression of the likelihood of trade as a
function of the seller’s and buyer’s signal. The results are reported in Table
7.

Value Mechanism Constant Seller signal  Buyer signal pseudo R?
ave price -1.306 (.247) -.013* (.0036) .029* (.0037) 257
min  price -1.601 (.378) -.003 (.0047) .019* (.0049) 130
max  price -1.133 (.376)  -.023* (.0057) .033* (.0059) .351
ave auction -0.051 (.450) -.045* (.0084) .022* (.0065) 470
min auction -0.834 (.404) -.021* (.0060) .014* (.0052) 211
max  auction -1.448 (.399) -.007 (.0052) .018* (.0050) 131

Table 7. Probability of trade as a function of signals; * = significant at 5%.

All slope coeflicients have the expected sign, and ten out of twelve are sig-
nificant at the 5% level. Trade depends more on the buyer signal than the
seller signal in all the price treatments, while the reverse is true in two out of
three auction treatments. However and with one exception (ave - auction),
the R? are rather low, which suggests that a probit regression is probably
not the most appropriate method for the purpose of our analysis.

To look at the relationship between buyer and seller signals more closely,
we conduct a classification analysis similar to section 4.2.2. Consider a linear
function ¢(s) with the property that trade occurs if the pair of signals (s, b)
is such that b > ¢(s). As in the estimation of ATFs, for any ¢(s) we
empirically determine the number of misclassified observations (trade when
b < ¢(s) or no trade when b > ¢(s)) weighted by the magnitude of the
misclassification (that is, the absolute difference between the actual signal
of the buyer and the cutoff signal such that the observation would not be
misclassified). This value divided by the total number of observations is
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called the misclassiﬁ/gation score or MS. For each treatment, we report the
estimated function, ¢(s), that minimizes the misclassification score. We also
report the percentage of misclassified observations or MO. Graphically, ¢
corresponds to the best dividing line between the trade and no trade regions
in the (b, s) signal space. The results of the estimated functions are presented
in Table 8 and included in the graphs of Figure 4.

Value (# obs.) Treatment a(s) MS MO

ave (260) price 42.3+0.40s 3.82 23.5%
ave (120) auction 30.1+0.87s 3.04 15.0%
min (120) price 73.7+0.04s 5.25 31.7%
min (120) auction 71.14+0.32s 391 20.8%
max (120) price 34.6 +0.62s 2.63 13.3%
max (120) auction 71.940.09s 4.05 21.7%

Table 8. Trade vs. no-trade division.
Result 10 ¢(s) is an increasing function.

The slope of the classification function is positive in all six treatments.
Sellers with higher signals set higher prices for the asset, thus decreasing
the likelihood of a trade. Conversely, buyers with higher signals set higher
bids and are also more likely to accept a given trade. Overall, the model
correctly classifies about 80% of the trade outcomes, although the slope and
accuracy of classification differ substantially across both value treatments
and mechanisms. The differences between the estimated functions in the
price and auction treatments reinforce the argument we made previously
about the impact that the trading mechanism has on the strategies selected
by subjects.

4.3 Learning

A natural question to ask is whether individuals adapt their strategies over
the course of a session. Clearly, the behavior is out of equilibrium, and
subjects are given considerable feedback, in both roles, with 20 repetitions
of the game. An adaptive player could recognize that his or her losses in the
role of seller are due to the adverse selection problem and increase the price
accordingly. The evolution in the response of subjects in the role of buyers
is less obvious, since buyers are generally doing quite well for themselves. A
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simple first cut to investigate learning consists in breaking the data down
into early and late plays. In each session, there were 20 rounds of play. We
code the choices in the first 10 rounds as ”inexperienced” and the choices in
the last 10 rounds as ”experienced”. Table 9 presents the average choices in
all six treatments broken down by experience level.

Treatment Round  Seller price Buyer bid % trade Seller gain
ave — price inexp. 62.2 (20.61) — 33.1  -3.8 (14.86)
exp. 60.8 (18.71) — 30.8 -5.4 (14.26)
ave — auction  inexp. 60.3 (21.57) 41.5 (15.11) 31.7  -4.9 (15.33)
exp.  64.6 (20.95) 41.7 (14.85) 217 -3.1 (9.52)
min — price inexp.  47.8 (20.66) — 28.3  -7.5(19.35)
exp.  47.0 (20.26) — 20.0 -2 3 (20.65)
min — auction inexp.  55.40 (19.5) 25.8 (20.02) 15.0 (14 65)
exp. 505 (20.70) 23.4 (20.62) 18.3 8 (9.87)
max — price inexp.  76.1 (17.00) — 36.7  -0.4 (21.85)
exp. 815 (18.18) — 25.0 -18.6 (22.03)
max — auction inexp. 74.5 (16.99) 50.3 (21.87) 16.7 -24.0 (13.52)
exp.  73.9 (17.55) 56.7 (22.77) 2.7 -5.8 (23.51)

Table 9. Average choices of sellers and buyers by level of experience.
Result 11 There is no clear evidence of learning by either buyers or sellers.

There is little evidence of systematic changes in the average behavior
of sellers and buyers between early and late rounds. Sellers increase prices
in two treatments, decrease in one and keep them roughly constant in the
other three. Buyers’ acceptance rate decreases in all the price treatments
but their bids increase in two of the auction treatments. This is consistent
with the findings of Carrillo and Palfrey (2006) in a related two-sided game
of incomplete information.'?

The absence or near absence of learning trends occurs in spite of sub-
stantial feedback after each round of play, as well as experience in both roles.
For example, the buyer knows the price asked by the seller and, at the end
of each round, learns the seller’s signal. Therefore, in principle, subjects can
partially reconstruct an average price function of sellers. The same applies
when the subject is in the role of a seller, who learns the buyer’s bid and sig-
nal (in the auction treatments) or the acceptance decision and signal (in the
price treatments). It appears, however, that this information does not lead

13Little or no learning has also been emphasized in experiments on common value auc-
tions and adverse selection (see e.g. Kagel and Levin (2002)).
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to changes in individual behavior sufficiently important to produce trends
at the aggregate level.

To explore this issue in more detail, we determine whether the behavior
of buyers and sellers as a function of their own signal is different at the
beginning than at the end of the experiment. Again, we divide the sample
into early play (first 10 rounds) and late play (last 10 rounds). We then
perform a maximum likelihood estimation in each subsample and in the
full sample. For all subjects in the auction treatment and sellers in the
price treatment, we run a linear regression of price (seller) or bid (buyer) on
own signal and constant term, for the two experience levels separately, and
compare it to the results from the pooled regression. For the case of buyers in
the price treatment, we instead perform a probit estimation, and control for
the seller’s offer price and the buyer’s signal. We then conduct a likelihood
ratio test to determine whether differences in choices between early and late
rounds are statistically significant. The findings are summarized in Table
10.

Player Treatment Likelihood estimation x2-test
value mechanism constrained unconstrained d.f.
seller  ave price -1280.56 -1281.19 2 1.27
seller  min  price -513.69 -514.45 2 1.52
seller ~ max  price -488.17 -490.64 2 494
seller  ave auction -590.49 -591.09 2 1.20
seller ~ min  auction -465.50 -468.93 2 6.86*
seller =~ max  auction -476.35 -476.79 2 0.88
buyer ave price -86.24 -87.55 3 261
buyer min  price -44.42 -47.61 3 6.38
buyer max  price -43.76 -47.70 3 T7.88°*
buyer ave auction -543.96 -547.46 2 7.00*
buyer min  auction -520.08 -520.18 2 0.19
buyer max  auction -520.59 -522.63 2 4.08

Table 10. Effect of experience on prices, bids and acceptance rates;

* = significant at 5%.

In only 3 out of 12 treatments differences are statistically significant at
the 5% level, and none are significant at the 1% level. Furthermore, in one
of these three treatments (buyer’s ave - auction), the change in the buyers’
strategy results in lower average profits for them. Again, this reinforces the
idea that subjects do not change significantly their strategy over time.
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5 A behavioral theory

In this section, we consider a behavioral theory that may account for the
choices of our subjects. We assume that players have an (incorrect) mutu-
ally held belief that the action of an opponent is less correlated with their
information than is actually the case. This type of cognitive limitation was
first discussed in Holt and Sherman (1994). Two recent theories have gen-
eralized the argument: ”cursed equilibrium” (Eyster and Rabin, 2005) and
”analogy based expectations” (Jehiel and Koessler, 2006).

In the extreme case, or ”fully cursed”, players have a mutual belief that
action and information is completely uncorrelated. Applying this to our
model, a fully cursed buyer in the price treatments will accept to trade if
and only if the price set by the seller is less than the buyer’s expected value
of the asset given his own signal, Fg[v(s,b) | b]. Simple computations yield:

25+b/2 (ave)
E[v(s,b)|b] =< b—1%/200  (min) (1)
50 + b2/200 (max)

The decision problem for sellers is slightly more complex. A fully cursed
seller in the price treatments anticipates correctly how the buyer’s proba-
bility of acceptance will depend on the offer price, p. However, the seller
believes the acceptance decision is independent of . Formally and given a
price p, a cursed seller believes that his expected payoff from setting price
at p, given signal s, is:

(p|s) = Pr(Es[v(s,b) |b] > p) p+ Pr(Es[v(s,b) | b] < p)Ep[v(s,b)]s]

Denote by p*(s) = argmax, II(p|s), the optimal price of a fully cursed
seller. After some algebra, we get:

50 + 7 (ave)

p(s)=¢ 04 1s— 14 (min)
100 / 10000+ 352
L0 4 ds? + o/ 0SS (max)

Having determined the theoretical choices of cursed individuals in the
price treatments, we can now compare them with the data. For the analysis
of buyers, we follow the classification method employed in Table 5 of section
4.2.2. Note that the equations in (1) correspond to nonlinear theoretical
ATFs for the cursed equilibrium model. We therefore consider the best
quadratic (rather than linear) ATF, to make it comparable to the cursed
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prediction. The performance of the cursed and empirical quadratic ATF's
of buyers are described in Table 11 and graphically represented in the left
column of Figure 3.

Value Strategy z/p\(b) M.S. %M.O.
ave cursed 25+0.5b 1.33 16.9%
empirical  33.6 + .02b 4 .005 b? 1.29 16.9%
min  cursed b — .005 b2 2.02 20.0%
empirical —14.8 +1.86b — .014b%>  1.60 16.7%
max  cursed 50 + .005 b2 1.88 12.5%
empirical 64.0 — .41b + .008 b? 1.84 15.0%

Table 11. Classification of buyers’ acceptance decision.

Result 12 The cursed equilibrium model classifies buyer acceptance deci-
sions as well as the best fitting quadratic ATF and better than the best linear
ATF.

Based on misclassification analysis, the dividing line for the cursed model
is remarkably accurate in all price treatments. In the ave and max treat-
ments, the cursed and empirical strategies are virtually identical in terms
of the misclassification score (for the max treatment fewer observations are
misclassified with the cursed function). In the min treatment, the difference
in performance is more significant, but this may be due to a limited number
of observations. In fact, according to the empirical strategy, the likelihood
of acceptance is decreasing in the buyer’s signal for all b > 66.4. This is the
result of a few buyers with high signals of 75 and above who play the Nash
equilibrium, and therefore refuse to trade even when the asking price is low
(see Figure 3). When comparing with Table 5, it is also remarkable that the
cursed quadratic functions perform better than the best linear fits in both
the min and max treatments. Also, although the number of misclassified
observations is non-negligible (up to 20%), in more than 50% of the cases,
the price is within 10 units of the correctly classified value.

The cursed equilibrium strategy of sellers can also be compared to its
empirical counterpart. In Table 12, we report a quadratic OLS regression
of the seller’s price as a function of the signal. Both the theoretical cursed
function, p*(s), and the empirical quadratic estimates reported below are
graphically represented in the left column of Figure 2.
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Value Mechanism Constant S s? adjusted R?
ave price 41.50 (3.38) .440 (.150) -.001 (.001) 270
min  price 26.33 (4.75) 574 (.219) -.002 (.002) 241
max  price 66.35 (4.42) -.001 (.192) .004 (.002) 342

Table 12. Seller’s quadratic OLS.

Result 13 The cursed equilibrium model implies seller pricing functions
simalar to what is observed in the data.

The theoretical cursed pricing functions predict that the constant terms
should be ordered max > ave > min and the linear coefficients should be
ordered min > ave > max. The quadratic coefficient is predicted to be 0 in
the ave treatment, small and negative in the min treatment and small and
positive in the max treatment. This is the pattern we find in Table 12, with
the exception that the quadratic coefficient for the min treatment is not
significantly different from 0. In general, the empirical function is slightly
steeper than the cursed prediction in every treatment but the overall shape
is quite similar (Figure 2, left column).

Finally, we can compare the likelihood of trade and seller profits in our
data with the predictions of the fully cursed model. For the ave treatments,
these can easily be obtained analytically, whereas for the min and max
treatments, we rely on numerical methods. The results are presented in
Table 13.

ave min max
cursed empirical cursed empirical cursed empirical
% trade 25.0 31.9 28.9 24.2 20.7 30.8
% trade given b < s 0.0 10.6 0.0 15.3 0.0 10.9
% trade given b > s 50.0 57.6 57.7 32.8 41.3 53.6
Average profit (seller) 0 -1.5 2.41 -1.3 -1.92 -2.4

Table 13. Cursed equilibrium: % trade and seller profits in price mechanism.

Result 14 The cursed equilibrium model implies trade frequencies similar
to what is observed in the data.

Specifically, the theoretical predictions of trade range between 20% and
30% of the time in the price mechanism, depending on the value treatment.
This compares with the observed range between 24% and 32%. Furthermore,
the model predicts trade only if b > s. In the experiment, there was almost
no trade (12%) when b < s.
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Result 15 The cursed equilibrium model implies an ordering of seller prof-
its (min > ave > maz) that we find in the data. However, we observe seller
losses in all three treatments, while the cursed model predicts losses only in
the max treatment.

In the cursed equilibrium model, expected seller profits range between 2.4
in min and -1.9 in max, whereas the corresponding numbers in our data range
between -1.5 in min and -2.4 in max. The ordering is therefore correct, but
the magnitudes are not. The sellers in our price mechanism lose more money
on average than the expected losses in a cursed equilibrium. We have the
same ranking of seller profits in the auction data as well (min > ave > max)
and, in that case, seller profits in the min treatment are actually positive.
Unfortunately, we have been unable to establish a theoretical solution to the
cursed equilibrium model in the auction treatments.

6 Conclusion

This study addressed the question of whether asymmetric information can
induce individuals to engage in exchange in environments where trade is
never mutually profitable, conditions under which such trade is more or
less prevalent, and the economic consequences for buyers and sellers. De-
spite the compelling and general logic of no-trade theories, traders trade
frequently. In particular, when the buyer’s signal exceeds the seller’s signal,
the likelihood of trade is between 32% and 58% depending on the treat-
ment. Buyers generally outperform sellers and the difference persists even
when subjects have gained experience both in the role of buyers and sellers.
In fact, there is surprisingly little evidence of learning in all treatments of
this game despite the substantial amount of feedback provided. We have
also shown that a sequential mechanism (a seller’s take-it-or-leave-it price)
always results in more trade than a simultaneous mechanism (a seller-price
double auction) even though both are strategically equivalent. Finally, we
have applied the cursed equilibrium theory to our model and shown that it
explains some general patterns of the data, such as the buyer’s acceptance
behavior and the aggregate probabilities of trade. However, it has a more
difficult time accounting for the variance in the behavior of sellers and the
profits of subjects in the different roles.

The effect of the trading mechanism on outcomes is particularly surpris-
ing and deserves further investigation. We have restricted our attention to
two mechanisms, seller price setting and double auction, but there are many
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other bargaining structures that could be considered and compared. Ob-
taining experimental insights on how choices depend on mechanisms that
are strategically equivalent could be of interest not only to improve our
understanding of bilateral trading games but also to learn how to design ef-
ficient allocation mechanisms in more general economic environments such
as auction and trading markets.

This approach could also be usefully applied to study bargaining be-
tween three or more parties, as in markets and auctions. It is an interesting
open question whether the tendency to trade excessively is exacerbated or
attenuated in environments with multiple buyers and/or multiple sellers.
For example, this could provide valuable insights about the design and per-
formance of prediction markets.

Finally, one would like to know whether alternative models could explain
better the main features of the data (substantial trade, systematic advantage
of buyers, importance of the order of moves, and absence of learning). Some
natural candidates would be partially cursed equilibrium, quantal response
equilibrium (McKelvey and Palfrey, 1995), and theories based on levels of
strategic sophistication such as cognitive hierarchy (Camerer et al., 2004).
Based on our earlier study of the compromise game (Carrillo and Palfrey,
2006), these theories provide only partial explanations, and there remains
much to learn about behavior and outcomes in games with two-sided private
information and common values.
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Figure 1. Sellers and buyers net gains by treatment
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Figure 2. Seller’s asking price by treatment
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Figure 3. Buyer’s acceptance or bid by treatment
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Figure 4. Likelihood of trade as a function of signals






