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Abstract

In this paper we design an econometric test for monotone comparative statics (MCS)

often found in models with multiple equilibria. Our test exploits the observable impli-

cations of the MCS prediction: that the extreme (high and low) conditional quantiles of

the dependent variable increase monotonically with the explanatory variable. The main

contribution of the paper is to derive a likelihood-ratio test, which to the best of our

knowledge, is the first econometric test of MCS proposed in the literature. The test is

an asymptotic “chi-bar squared” test for order restrictions on intermediate conditional

quantiles. The key features of our approach are: (1) it does not require estimating the

underlying nonparametric model relating the dependent and explanatory variables to the

latent disturbances; (2) it makes few assumptions on the cardinality, location or proba-

bilities over equilibria. In particular, one can implement our test without assuming an

equilibrium selection rule.

JEL classification numbers: C1,C5

Key words: Econometrics of Games, Monotone Comparative Statics, Quantile Regres-

sion, Multiple Equilibria



A Test for Monotone Comparative Statics

Federico Echenique Ivana Komunjer

1 Introduction

Comparative statics predictions—or how exogenous variables affect endogenous

variables—are important to establish in economic models.1 Often, the models possess

multiple equilibria, and a monotone comparative statics (MCS) prediction holds: There

is a smallest and a largest equilibrium, and these change monotonically with explanatory

variables (Milgrom and Roberts, 1990; Milgrom and Shannon, 1994; Villas-Boas, 1997).

MCS is a feature found in many well-known economic models. Examples are single-

person decision models such as models of optimal growth (Barro and Sala-I-Martin, 2003;

Ljungqvist and Sargent, 2004) and firms’ investment decisions (Hayashi, 1982; Hayashi

and Inoue, 1991), as well as many models in IO (see Vives (1999) for survey). Current

econometric literature, on the other hand, has largely remained silent on the issue of

formal tests for MCS. The goal of this paper is to fill this gap.

There are two challenges in testing the MCS hypothesis. The first is to obtain testable

implications; the second is to construct a formal statistical test and study its properties.

In the context of structural models, Echenique and Komunjer (2007) solve the first, but

not the second challenge. They obtain testable implications of the MCS property in

1According to Samuelson (1947): “The usefulness of our theory emerges from the fact that by our

analysis we are often able to determine the nature of the changes in our unknown variables resulting

from a designated change in one of more parameters.”



the form of restrictions on the conditional quantiles of the dependent variable given the

explanatory variable.

In this paper, we derive similar restrictions on conditional quantiles in the context of

reduced form models with multiple equilibria. Our main contribution is to show how to

test those restrictions in a way that is not affected by equilibrium selections. In general,

the latter are unknown and have to be treated as nuisance parameters of the problem.

Our approach is to first estimate the conditional quantiles nonparametrically, then use

those to construct an asymptotic likelihood-ratio test of the order restrictions implied by

the MCS. The test relies only on the asymptotic distribution results; it is an extension

of the “chi-bar squared” test by Gourieroux, Holly, and Monfort (1982) and Kodde and

Palm (1986) to restrictions on conditional quantiles.

In the remainder of this Introduction, we give a brief overview of the related literature,

and present an example of how one could use our results.

Related Literature. As early as in the work of Bjorn and Vuong (1984, 1985),

econometricians recognized the importance of testing economic models that possess mul-

tiple equilibria. Proposed solutions to the problem of multiplicity have been to assume

the probabilities of various equilibrium realizations known (Bjorn and Vuong, 1984);

or finitely parameterized (Bjorn and Vuong, 1985; McKelvey and Palfrey, 1995; Bajari,

Hong, and Ryan, 2004; Sweeting, 2005). Without the specification of an equilibrium

selection rule, there are alternative approaches to estimation and inference. The first

exploits the fact that—despite the multiplicity—some of the model features are uniquely

predicted (Bresnahan and Reiss, 1990, 1991); by focusing attention on those features,

one is then able to carry out likelihood-based estimation and inference.

The second approach is to work with structural models in which point or set identifi-

cation of the structural parameters is known to hold. Observable implications in models

with multiple equilibria were first derived by Jovanovic (1989) who sought conditions

for point identification. A number of recent papers in the (quickly expanding) literature

on econometrics of games further carry out estimation in such models (Bresnahan and
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Reiss, 1990, 1991; Berry, 1992). When the parameters of interest are only set-identified,

interesting results on estimation and inference have been derived by (Tamer, 2003; An-

drews, Berry, and Jia, 2004; Ciliberto and Tamer, 2004; Kim, 2005; Galichon and Henry,

2006).

Mostly, the above papers build on discrete-choice methods and are well-suited for

models with few choice variables; our methods, on the other hand, apply to models

with continuous endogenous variables. The goal in those papers is also different than

ours: typically, they try to estimate agents’ payoff functions (i.e. estimate the nature

of strategic interaction); we only test for the presence of a comparative statics effect.2

Understandably, they make more parametric assumptions than we do.

Example. We now illustrate how to use our results. Say that one is interested in

testing whether an exogenous change in a policy causes the prices in the market for cars

to increase. When there are complementarities between the policy and the agents’ choice

variables, the effect on prices takes the form of MCS. In the case of car prices, policy

changes which increase marginal cost would cause the smallest and largest equilibria to

increase. Examples of these policies are environmental regulations (Pakes, Berry, and

Levinsohn, 1993) and voluntary export restraints (Berry, Levinsohn, and Pakes, 1999).

Concretely, let Y denote the price and X the policy dummy; further, suppose that

an economic theory posits a reduced form model for Y that has the form Y = g(X)U ,

where one observes an “intended equilibrium” g(X), subject to a multiplicative shock U .

Here, g is generally unknown.

Many models which yield predictions for price competition—such as Berry, Levinsohn,

and Pakes (1995, 1999), for example—are also likely to have multiple equilibria. We

capture this by letting g be a correspondence (a set valued map) instead of a function

(single valued map), so there is generally a set EXU of equilibrium predictions for Y . We

assume further that there is an unknown equilibrium selection procedure, which results

2We note that Athey and Stern (1998) discuss tests for monotone comparative statics, however, only

in the context of firms’ choice of organizational form.
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Before

After

Figure 1: Price distribution before the change in policy, and after.

in a distribution PX over EXU . This multiple equilibrium model gives rise to a mixture

conditional distribution for Y given X.

We illustrate the effect of a change in X in Figure 1. Before the change in the policy,

we have three elements in the mixture, and after we have five. The probabilities under

each element are result of some equilibrium selection procedure. The case in Figure 1

presents a challenge: note that the conditional expectation of Y given X decreases. And

one can construct examples where following a change in X, the conditional mean of

Y increases. Thus—as a result of equilibrium multiplicity—standard practices such as

an OLS regression of prices on the policy dummy can be very misleading: the testable

implications of the MCS property are not on the conditional mean of prices.

Our solution is to work with restrictions that MCS implies irrespective of the way

equilibria are selected. As already said, those restrictions are on the conditional quantiles

of Y given X, and we derive them following a reasoning similar to that in Echenique and

Komunjer (2007). It is important to stress that we make few assumptions on the true

equilibrium distribution. We only assume that PX puts a positive probability on the

extremal equilibria. Similarly, our assumptions on the distribution of the equilibrium

deviations U are weak; we need them to belong to a well-known class of distributions in

extreme-value theory. This class includes most distributions commonly used in empirical

work, such as Gaussian, lognormal and exponential distributions.
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Once the appropriate implications of the MCS hypothesis derived, we proceed with a

construction of a likelihood-ratio test. In particular, our test is a test for order restrictions

on the conditional quantiles of Y given X. We use a two step approach: first, we construct

nonparametric estimators for the conditional quantiles of Y given X. The key difficulty

here is that the MCS prediction holds only for quantiles that are extreme; hence, we

need to use a nonstandard framework to derive their asymptotic distribution (Dekkers

and de Haan, 1989; Chernozhukov, 2005).

In the second step, we construct a likelihood-ratio test for order restrictions based on

the asymptotic distributions of our conditional quantile estimators. This step presents

important challenges as the existing results (Gourieroux, Holly, and Monfort, 1982;

Kodde and Palm, 1986) apply only to the conditional means; hence, we need to extend

them to our extreme conditional quantile framework. Perhaps an even greater difficulty

comes from the presence of numerous nuisance parameters—unknown equilibrium selec-

tion probabilities—that we need to eliminate from our test statistic. Unfortunately, the

standard approaches of dealing with nuisance parameters fail to work once we exit the

usual asymptotic framework. Our solution is to first consider the problem in the exact

case (as in Bartholomew (1959a,b), for example), then extend the obtained solution to

our asymptotic framework.

The remainder of the paper is organized as follows: We introduce the model in Sec-

tion 2, and present the intuition behind our main results in Section 3. In Section 4

we present the basic statistical framework, and develop an approach to estimation in

Section 5. Finally, in Section 6 we present our test.
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2 Setup

2.1 Multiple Equilibrium Model

Consider a familiar nonlinear regression model with a multiplicative error:

Y = g(X)U, (1)

that relates a dependent variable Y ∈ R++, an explanatory variable X ∈ X with X
finite in R, and a latent disturbance U ∈ R++.3 While the explanatory and dependent

variables X and Y are observable, the disturbance U is not; U can be thought of as

unaccounted heterogeneity in the model. The map g in Equation (1) is unknown; we

assume however that g is positive valued, so that the positivity of the dependent variable

is preserved. When the map g is known up to some finite dimensional parameter θ, one

can write g(X, θ) in Equation (1). Finally, note that the random variables Y and U are

assumed to be continuous, whereas X is restricted to be discrete.

Underlying the model in Equation (1) is the assumption that, given the explanatory

variable X, a unique value of the dependent variable Y can be assigned to each value of

the disturbance U . In other words, conditional on X, the mapping from the unobservables

to the observables is single valued, and g in Equation (1) is a function. In models that

possess multiple equilibria, this letter property is generally violated as more than one

value of Y can be associated with each value of U .

In order to adapt our model to multiple equilibria for Y , we shall assume that the map

g in Equation (1) is a correspondence g : R ⇉ R++, which, to each x ∈ X , assigns the set

Γx ≡ {gi(x), . . . , gNx(x) : g1(x) 6 . . . 6 gNx(x)}. The maps gi which define the image set

Γx are single valued so every gi : R → R++ is a function. We do not make any assumptions

regarding continuity or differentiability of gi’s except that they are Borel-measurable. As

a result, there are multiple equilibria for the dependent variable Y in Equation (1) given

by Yi = gi(X)U with i = 1, . . . , NX . We then let EXU ≡ {Y1, . . . , YNX
} denote the

3Lowercase letters y, x and u denote the realizations of the random variables Y , X and U , respectively.
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equilibrium set.4 Note that all equilibria for Y are ordered in EXU , i.e. Y1 6 . . . 6 YNX
.

We shall work with the following definition.

Definition 1. A multiple equilibrium model is a collection (EXU , PX , FU |X) such that for

every (x, x′, u) ∈ X 2 × R++ we have:

(i) Exu ⊆ R++ is finite and nonempty;

(ii) x < x′ implies that min Exu < min Ex′u and max Exu < max Ex′u;

(iii) Px is a probability distribution over Exu, Px(min Exu) > 0 and Px(max Exu) > 0;

(iv)FU |X=x is a twice-differentiable distribution function with positive density on R++.

We assume that EXU ⊆ R++ is finite, so we accommodate multiple, but finitely-

many, equilibria. The assumption is common, and often justified by standard genericity

arguments: In parameterized families of economic models, one obtains finitely many

equilibria except on sets of measure zero (see e.g. Mas-Colell, Whinston, and Green

(1995)). Our results shall build on the comparative statics in item (ii) of Definition 1:

an increase in X causes the smallest and largest equilibria in EXU to increase. Such

Monotone Comparative Statics (MCS) property has been shown to hold in a number of

economic models (Milgrom and Roberts, 1990; Milgrom and Shannon, 1994; Villas-Boas,

1997; Echenique and Komunjer, 2007). Some examples are comparative statics in single-

person (or social planner) decision models and one dimensional equilibrium models, such

as two player games.

The probability distribution PX in item (iii) of Definition 1 reflects some equilibrium

selection procedure. It is important to note that while the elements of the equilibrium

set EXU vary with U , the probabilities assigned to them by PX can only depend on

X. In other words, the probability πXi of choosing the ith equilibrium Yi under PX

(i = 1, . . . , NX) must not depend on U . Our multiple equilibrium model should then

be interpreted as follows: given the explanatory variable X, the dependent variable Y is

4Note that while we explicitly allow the cardinality of the equilibrium set Nx to vary with x, we can

also accommodate the case in which the latter varies with u provided Card(Exu) remains bounded by

some Mx for every u ∈ R++.
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distributed as FY |X , where FY |X is a discrete mixture of continuous distributions:

FY |X(y) =

NX
∑

i=1

πXi · FU |X

( y

gi(X)

)

, (2)

for any y ∈ R, where πXi (i = 1, . . . , NX) is the probability of choosing the ith equilibrium

Yi under PX . The assumptions on FU |X imply that FY |X is twice differentiable on R++

with density fY |X that is positive on R++.

Given α ∈ (0, 1), we let qY |X(α) denote the α-quantile under FY |X : qY |X(α) ≡ inf{y ∈
R++ : FY |X(y) > α}, which under our assumptions also equals qY |X(α) = F−1

Y |X(α). In

what follows, we devote particular attention to the distribution tails of the dependent

variable: F̄Y |X ≡ 1−FY |X . Similarly, we let F̄U |X ≡ 1−FU |X . Note that given α ∈ (0, 1),

we have the following simple relation:

qY |X(α) = F̄−1
Y |X(1 − α). (3)

2.2 On the Model Assumptions

We now comment on the restrictions we have made in our multiple equilibrium model.

2.2.1 Multiplicative error model

We have defined the equilibrium set EXU using the multiplicative error model specification

in Equation (1), with g being a correspondence. Alternatively, one can take the mixture in

Equation (2) to be one of the primitive assumptions of our multiple equilibrium model. As

we shall show in subsequent sections, the mixture property in Equation (2) is instrumental

in deriving our results. In particular, the latter do not explicitly use the multiplicative

error specification in Equation (1).

This raises the question of the plausibility of the mixture assumption for FY |X . In

Echenique and Komunjer (2007) we provide a general result on how such mixtures arise

in structural econometric models of the form r(Y,X) = U under fairly weak assumptions

on the structural function r.
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2.2.2 Assumptions on PX

We have assumed that the largest and smallest equilibria in EXU have positive prob-

ability under PX—this is our only deviation from being agnostic regarding PX .5 We

actually need something somewhat weaker, and it will be clear that, without our weaker

assumption, no testable implications are possible. We argue here that our assumption is

reasonable.

To fix ideas, let X = {x, x} ⊆ R with x < x. We need that for every u ∈ R++,

the largest equilibrium in Exu, of those with positive Px probability, be smaller than the

largest equilibrium in Exu with positive Px probability. This is a weaker requirement

than the one we have imposed above. It says that the equilibrium selection mechanism

implicit in PX should have the right correlation with respect to changes in X.

We claim that this correlation can be expected to hold: suppose agents are playing

an equilibrium in Exu when the explanatory variable changes to x. Then a broad class

of learning dynamics must lead them to play a larger equilibrium (Echenique (2002)

presents a formal statement and proof).

2.2.3 Assumptions on FU |X

Our multiple equilibrium model assumes that FU |X is a continuous distribution with

support R++. It is worth pointing out that we let FU |X be unknown. In some cases,

it might be preferable to assume FU |X known, at least up to some finite-dimensional

parameter; in such cases, the conditional distribution of Y in Equation (2) could in prin-

ciple be estimated via maximum likelihood methods, provided the equilibrium selection

probabilities PX are either known or finitely parameterized. However, the presence of

unknown equilibrium probabilities PX in FY |X causes almost all the practical problems

of implementation and model estimation with maximum likelihood methods.6

5One precedent in this respect is Sweeting (2005), who assumes that all equilibria have positive

probability.
6For example, if the estimation is carried out by using the EM-algorithm, both the location of different

equilibria and the probabilities attached to them need to be estimated (e.g. see Carroll, Ruppert, and
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Figure 2: Equilibrium distributions.

3 Nature of the problem and results

We first explain our results informally. Consider again our example in which X =

{x, x} ⊆ R, x < x where x and x denote low- and high-level of the explanatory variable.

In addition, letting y
i

and yj denote the equilibrium levels when (X = x, U = u) and

(X = x, U = u), respectively, assume that Exu = {y
1
, y

2
, y

3
} and Exu = {y1, y2, y3, y4, y5},

where y
i
= gi(x)u and yi = gi(x)u. The situation is represented in Figure 2.

The problem of obtaining testable implications is to say how the distributions FY |X=x

and FY |X=x must differ (FY |X was defined in Equation (2)). All we have to work with

is that y
3

< y5 (and y
1

< y1), but the probability of the y5 equilibrium is very low,

that of y
3

is very high, and there are three equally likely equilibria with high sum of

probabilities, y2, y3 and y4, that are smaller than y
3
.

Note that the mean (and median) of the dependent variable under FY |X=x is smaller

than that under FY |X=x. Thus the conditional mean (and median) of Y does not change

monotonically in X. One can change the example so the conditional mean increases

Stefanski (1995)).

10



instead of decreasing; thus the MCS property in item (ii) of Definition 1 produces no

testable implications for the conditional mean of the dependent variable. One is also

more likely to observe a realization under FY |X=x that is larger than under FY |X=x than

vice versa.

Our solution to finding testable implications is to assume the right structure on the

distribution tails, so the effect of y
3

< y5 is felt for large enough values of the dependent

variable, irrespective of the values of the corresponding probabilities Px and Px. We show

how, for large enough realizations y of Y , the distribution tails F̄Y |X=x ≡ 1−FY |X=x and

F̄Y |X=x ≡ 1 − FY |X=x must satisfy F̄Y |X=x(y) < F̄Y |X=x(y).

To further simplify the notation, let πi (resp. πj) denote the probabilities assigned

to the elements of Exu (resp. Exu) under Px (resp. Px). Note that the tail F̄Y |X is related

to F̄U |X ≡ 1 − FU |X via:

F̄Y |X=x(y) = π3 · F̄U |X=x

(

y/g3(x)
)

+ π2 · F̄U |X=x

(

y/g2(x)
)

+ π1 · F̄U |X=x

(

y/g1(x)
)

, (4)

Assume that the tails of FU |X=x satisfy the following property:

lim
u→∞

F̄U |X=x(λu)

F̄U |X=x(u)
= 0, (5)

whenever λ > 1. Property (5) requires that the tail of the distribution FU |X is not too

heavy. As we explain below, it is a well-known condition in the statistics of extreme

values, and it is satisfied by most distributions familiar to practitioners.

Now,
F̄U |X=x

(

y/g2(x)
)

F̄U |X=x

(

y/g3(x)
) =

F̄U |X=x(λz)

F̄U |X=x(z)
,

where we have let z ≡ y/g3(x) and λ ≡ g3(x)/g2(x) > 1, and similarly with g1 in place of

g2. So, dividing by F̄U |X=x

(

y/g3(x)
)

throughout Equation (4), and using Property (5),

we obtain that:

F̄Y |X=x(y) ∼ π3 · F̄U |X=x

(

y/g3(x)
)

as y goes to ∞.
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In other words, the behavior of F̄Y |X=x(y) for large y is driven solely by the largest

equilibrium y
3
. Under analogous assumptions on the tails of FU |X=x, it is easy to show

that F̄Y |X=x(y) behaves like π5 · F̄U |X=x

(

y/g5(x)
)

. Thus,

F̄Y |X=x(y)

F̄Y |X=x(y)
∼

[

π3

π5

]

A

[

F̄U |X=x

(

y/g3(x)
)

F̄U |X=x

(

y/g5(x)
)

]

B

[

F̄U |X=x

(

y/g5(x)
)

F̄U |X=x

(

y/g5(x)
)

]

C

. (6)

From item (iii) in Definition 1, we know that the term A is bounded. Since y
3

< y5, our

assumption on FU |X=x in Equation (5) implies that the B term goes to 0 as y grows. If,

in addition, we assume that:

F̄U |X=x(y)

F̄U |X=x(y)
is bounded as y goes to ∞, (7)

then the C term is bounded. So F̄Y |X=x(y)/F̄Y |X=x(y) converges to 0 irrespective of the

probabilities under Px and Px. Hence, for large enough y, the tail of FY |X=x(y) is thicker

than that of FY |X=x(y); this is the essence of our testable implication.

To summarize, Statements (5) and (7) together ensure that the ratio of F̄Y |X=x to

F̄Y |X=x goes to zero. This is our testable implication: F̄Y |X=x(y)/F̄Y |X=x(y) for y large

enough. As a result, large enough population quantiles must be larger under FY |X=x than

under FY |X=x. In the next section we show how this result generalizes.

4 Econometric Framework

A useful statistical framework to formalize the basic ideas in Section 3 is that of regularly-

varying functions. We first give some preliminary definitions, and results on regularly-

varying functions. We then exploit this theory to develop statistical tests for the models

in Section 2.

4.1 Regular Variation Theory

In this subsection, H denotes a distribution function with positive density h on R++ and

distribution tail H̄ ≡ 1 − H. We shall focus on the behavior of H̄ in +∞, knowing that

12



analogous results can be obtained at zero.

Definition 2. A distribution tail H̄ : R++ → (0, 1) is regularly varying at c, 0 6 c 6 ∞,

with index ρ, −∞ 6 ρ < ∞, denoted H̄ ∈ Rρ at c, if for λ > 0:

lim
x→c

H̄(λx)

H̄(x)
= λρ. (8)

The notion of regular variation was first introduced by Karamata (1930)); see e.g.

Resnick (1987) for an exposition. When c is understood we shall often abuse notation

and write H̄ ∈ Rρ.

We focus on regular variation at c = ∞ with index ρ = −∞, denoted by R−∞ at ∞.

Most of the distributions employed in economics, such as the Gaussian, exponential and

lognormal distributions, are in R−∞ at ∞. The distributions in R−∞ at ∞ are also called

“(−∞)-varying” or “rapidly varying.” They are moderately heavy-tailed, or light-tailed,

meaning that their tails decrease to zero faster than any power law x−α.7

Note that the special case of H̄(·) being in R−∞ at ∞ is defined by

lim
x→∞

H̄(λx)

H̄(x)
=







0 if λ > 1

∞ if λ < 1.
(9)

The discussion in Section 3 should suggest that Statement (9) is a useful property. Now,

the property in Statement (9) does not control the rate at which H̄(λx)/H̄(x) converges.

By using a subclass of (−∞)-varying distribution tails, called Γ (de Haan, 1970), we can

exercise this control.

Definition 3. A distribution tail H̄ belongs to the class Γ, H̄ ∈ Γ, if there exists a

function a : R++ → R++ such that for λ > 0,

lim
x→∞

H̄
(

x + λa(x)
)

H̄(x)
= exp(−λ); (10)

a is called the auxiliary function of H̄.

7This implies that all the moments of a random variable with a (−∞)-varying distribution tail are

finite. Examples of distributions with ρ-varying tails, ρ > −∞, which do not have finite moments are:

(1) a stable law with index α, 0 < α < 2, for which ρ = −α; (2) a Cauchy distribution, for which ρ = −1.

Hence the use of those distributions is not permitted in our framework.
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When H̄ ∈ Γ, one can show that a can be chosen as a ≡ H̄/h (we shall often make

this choice).

That Γ ⊆ R−∞ is a direct consequence of Theorem 1.5.1 in de Haan (1970). Examples

of distributions whose tails are in Γ are: exponential, two-parameter Gamma, Gaussian,

lognormal, and Weibull (see e.g. Embrechts, Kluppelberg, and Mikosch (1997)).

The tail properties in Equations (8) and (10) translate into similar properties for the

inverse function H̄−1 : (0, 1) → R++ (see Lemma 5) and the class of regularly varying

functions is closed under inversion. The inverses of functions in Γ, however, do not belong

to Γ but form a class called Π de Haan (1970, 1974).

Definition 4. A function H̄−1 : (0, 1) → R++ belongs to the class Π, H̄−1 ∈ Π, if there

exist functions b : R++ → R++ and a : R++ → R++ such that, for µ ∈ (0, 1),

lim
y↓0

H̄−1(µy) − b(y)

a(y)
= − ln µ. (11)

When H̄ belongs to Γ with auxiliary function ã, Equation (11) holds with b(y) ≡
H̄−1(y) and a(y) ≡ ã(H̄−1(y)).

4.2 Testable Implications: General Result

We now return to our multiple equilibrium model (EXU , PX , FU |X) and impose structure

on the distribution tails F̄U |X of the disturbances.

Assumption S1. Say that a multiple equilibrium model (EXU , PX , FU |X) satisfies as-

sumption S1 if, for every x ∈ X , F̄U |X=x is in R−∞ at ∞.

We now show how the properties of the tails F̄U |X translate into properties of the tail

of the conditional distribution of the dependent variable F̄Y |X in Equation (2). Recall

that πXNX
denotes the probability of choosing the largest equilibrium YNX

= gNX
(X)U

under PX .

Lemma 1. If (EXU , PX , FU |X) satisfies S1, then for every x ∈ X :

(i) F̄Y |X=x is in R−∞ at ∞, and F̄Y |X=x(y) ∼ πxNx · F̄U |X=x

(

y/gNx(x)
)

as y → ∞;

(ii) F̄−1
U |X=x and F̄−1

Y |X=x are in R0 at 0, and F̄−1
Y |X=x(v) ∼ gNx(x) · F̄−1

U |X=x(v) as v ↓ 0.
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Thus, the limit behavior of the distribution tail F̄Y |X is determined by the largest

equilibrium in EXU and its probability. In the limit, the conditional quantiles of Y are

proportional to the quantiles under FU |X , and the constant of proportionality equals

gNX
(X).

In order to generalize the argument in Section 3 we need to strengthen our assump-

tions:

Assumption S2. Say that a multiple equilibrium model (EXU , PX , FU |X) satisfies S2 if

it satisfies S1 and, in addition, for every (x, x′) ∈ X 2 such that x < x′, we have:

F̄U |X=x(u)

F̄U |X=x′(u)
is bounded as u goes to ∞. (12)

Using the above assumptions together with Lemma 1 allows us to derive our first

main result :

Theorem 1. If (EXU , PX , FU |X) satisfies S2, then for any (x, x′) ∈ X 2 there is ȳ ∈ R++

such that x < x′ implies F̄Y |X=x(y) < F̄Y |X=x′(y) for all y > ȳ. Equivalently, there is

ᾱ ∈ (0, 1) such that x < x′ implies qY |X=x(α) < qY |X=x′(α) for all α ∈ [ᾱ, 1).

The idea of Theorem 1 is that, if the distribution FU |X is not too heavy-tailed, the

effect of X on the largest equilibrium in EXU will eventually be noticed in the tail of FY |X .

In a sense, there is a race between the potentially damaging effect of other equilibria in

EXU , and the effect of the largest equilibrium YNX
. Since PX is arbitrary, PX can work

in favor of the other equilibria in EXU , as in Figure 2. But the (−∞)-varying condition

on F̄U |X and Property (12) together guarantee that the largest equilibrium wins the race.

Hence, for large values of y, the conditional distributions FY |X=x(y) of the dependent

variable have tails that increase monotonically with x, a property akin to monotonicity

in first-order stochastic dominance. Equivalently, Theorem 1 has consequences for the

quantiles of Y conditional on X. In the limit, the conditional quantiles of the dependent

variable given X are monotone increasing in X.
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4.3 Further Model Implications

Theorem 1 suggests one can use estimates of conditional quantiles under FY |X for testing,

but there are several difficulties. First, the theorem does not determine ȳ or ᾱ; it does

not identify the quantiles for which we have testable implications. Second, we need to

know the (asymptotic) distribution of the conditional quantile estimates—the key is to

derive the latter by imposing structure on the distributions FU |X while maintaining our

agnosticism about the PX distributions. Third, given the asymptotic distributions of

estimates for quantiles under FY |X , we need to derive a test that is not influenced by

the PX distributions nor the non-extremal values in EXU , for which our model makes no

predictions.

In order to deal with the asymptotics, we need to impose further structure on the

distribution tail F̄U |X : in addition to being (−∞)-varying, F̄U |X is now assumed to belong

to the class Γ.

Assumption S3. Say that a multiple equilibrium model (EXU , PX , FU |X) satisfies S3 if it

satisfies S1 and, in addition, for every x ∈ X we have F̄U |X=x ∈ Γ with auxiliary function

aU
x .

This allows us to show the following results on the tails of conditional distributions

FY |X of the dependent variable.

Lemma 2. If (EXU , PX , FU |X) satisfies S3, then for every x ∈ X :

(i) F̄Y |X=x ∈ Γ with auxiliary function aY
x (y) = gNx(x) · aU

x

(

y/gNx(x)
)

for all y > 0;

(ii) F̄−1
U |X=x and F̄−1

Y |X=x are in Π with auxiliary functions aU
x ◦ F̄−1

U |X=x and aY
x ◦ F̄−1

Y |X=x

in R0 at 0, and aY
x

(

F̄−1
Y |X=x(v)

)

∼ gNx(x) · aU
x

(

F̄−1
U |X=x(v)

)

as v ↓ 0.

Lemma 2 presents two results: First, that the Γ (resp. Π) properties of F̄U |X (resp.

F̄−1
U |X) continue to hold for F̄Y |X (resp. F̄−1

Y |X). Hence, we will only need to make assump-

tions on the behavior of F̄U |X in Equation (2) in order to fully characterize the behavior

of F̄Y |X(y) as y gets large. Note that this result is particularly important if we want to

preserve our agnosticism about the probabilities PX over equilibria in EXU .
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The second result of Lemma 2 is to show how aY
X ◦ F̄−1

Y |X relates to aU
X ◦ F̄−1

U |X . We

shall prove that these expressions are involved in the formulation of the central limit

theorem for empirical conditional quantiles under FY |X . In other words, the results of

Lemma 2 are essential for understanding the asymptotic properties of the estimators for

conditional quantiles of Y given X, and hence for constructing an econometric test of

the implication derived in Theorem 1.

5 Estimation

5.1 Notation and Setup

Fix x ∈ X and assume that the econometrician observes some large number Tx of real-

izations of the dependent variable Y obtained when the explanatory variable X takes the

value x. More formally, let (Yx,1, . . . , Yx,Tx) be a random sample of size Tx from a distribu-

tion function FY |X=x. Let (yx,1, . . . , yx,Tx) denote the realizations of (Yx,1, . . . , Yx,Tx) and

write F̂Y |X=x to be the empirical distribution function, F̂Y |X=x(y) ≡ T−1
x

∑Tx

t=1 1I(yx,t 6 y)

for y > 0. For a given α, 0 < α < 1, the empirical quantile under FY |X=x is then given

by:

q̂Y |X=x(α) ≡ inf{y ∈ R++ : F̂Y |X=x(y) > α}. (13)

Under standard regularity conditions, the estimator in Equation (13) is consistent for

the true α-quantile under FY |X=x. Consistency of q̂Y |X=x(α) can be extended to cases

where (Yx,1, . . . , Yx,Tx) is a weakly dependent time-series, provided additional assumptions

(Pollard, 1991; Portnoy, 1991; Koenker and Zhao, 1996; Komunjer, 2005; Chernozhukov,

2005); for the sake of simplicity, we focus on the independent case.

To alleviate the notation, we drop the reference to x when doing so introduces no

ambiguities. Hence we use the notation (Y1, . . . , YT ), T , F̂ and q̂(α) to denote the random

sample under FY |X=x, its size, the corresponding empirical distribution function and the

α-quantile estimator in Equation (13).
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As pointed out previously, the main object of interest are α-quantiles with probabil-

ities α close to unity. How close α is to 1 is determined by the sample size T ; hence we

let this probability be a function of the sample size, and we denote it by αT . Knowing

how α varies with T will then enable us to answer the question: for a given sample size

T how large α needs to be for the ordering in Theorem 1(ii) to hold.

5.2 Central Limit Theory for Intermediate Empirical Quantiles

We now derive the asymptotic distribution of q̂(αT ) in Equation (13) when limT→∞ αT =

1 and when (1−αT )T has a positive limit as T goes to infinity. In particular, we consider

the case where limT→∞(1 − αT )T = ∞. This last condition describes how fast α has

to go to unity relative to the sample size T ; knowing that T−1 = o(1 − αT ) we can use

an appropriate limit theory result to derive an asymptotic distribution of the α-quantile

estimator q̂(αT ) in Equation (13).

We shall need the following lemma.

Lemma 3. Consider a random sample (Y1, . . . , YT ) of size T from F and let q̂(αT ) be the

corresponding empirical αT -quantile. If the distribution tail F̄ ∈ Γ with auxiliary function

a and with density f which is eventually non-increasing, then, provided limT→∞ αT = 1

and limT→∞(1 − αT )T = ∞ we have:

√

T (1 − αT )
q̂(αT ) − q(αT )

a
(

q(αT )
)

d→ N and
q̂(βT ) − q̂(αT )

a
(

q(αT )
)

p→ ln ρ ,

where N is a standard Gaussian random variable and βT is such that αT < βT < 1 and

(1 − αT )/(1 − βT ) → ρ with ρ > 1.

Lemma 3 presents two limit results. The first was proven by Falk (1989). The second

is new.

The first result in the lemma shows the asymptotic behavior of intermediate empirical

quantiles when αT depends on the sample size T . It is an extension of the well-known

result for central α-quantiles with α ∈ (0, 1) fixed (Mosteller, 1946; Smirnov, 1952; Sid-

diqui, 1960; Bahadur, 1966; Bassett and Koenker, 1978; Powell, 1984, 1986), to the case
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where α increases with the sample size T . Dekkers and de Haan (1989) and Chernozhukov

(2005) prove this extension under an additional assumption on the tail behavior of F .

While it is not new, we include a proof of the first result to make the paper self-contained,

and because it requires little beyond what we need to prove the second result.

The second limit result of Lemma 3 is important because it gives us a consistent

estimator of the variance of the empirical quantile. Recall that Theorem 1 says that the

conditional quantiles of Y given X must be increasing in X. With consistent estimators

of quantiles in hand, a test seems easy to derive. The problem, though, is that we do

not know how the asymptotic variances of the quantile estimators change with X. Our

second result in Lemma 3 allows us to solve the problem.

The second limit result of Lemma 3 extends a result on the asymptotic distribution

of the quantile spacings derived by Dekkers and de Haan (1989) for the case ρ = 2 (see

also Chernozhukov (2005)). The result by Dekkers and de Haan (1989) requires that

dF̄−1(v)/dv be in R−1 at 0, an assumption that we need to avoid because it implies a

restriction on the equilibrium selection PX . By focusing on consistency, and not on the

asymptotic distribution of quantile spacings, we obtain a result only assuming that F̄

in Γ and that f if eventually non-increasing. Consistency, in turn, is sufficient for our

testing procedure.

We should note that the assumption that f be eventually non-increasing imposes no

restriction on the equilibrium selection probabilities πXi in Equation (2), and follows

from requiring the density of FU |X to be eventually non-increasing.

5.3 Estimates for Conditional Quantiles under (EXU , PX , FU |X)

We now assume a collection of random samples for different values x ∈ X of the explana-

tory variable X. Concretely, consider a multiple equilibrium model (EXU , PX , FU |X),

and assume we observe realizations from k > 2 random samples (Yx1,1, . . . , Yx1,Tx1
)

to (Yxk,1, . . . , Yxk,Txk
) of sizes Tx1 to Txk

, respectively. To ease the notation, for any
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j = 1, . . . , k, we let (Yj,1, . . . , Yj,Tj
) denote (Yxj ,1, . . . , Yxj ,Txj

); in other words, we replace

the subscript xj with j whenever doing so does not introduce any ambiguity. The k

samples are assumed independent and drawn from the distributions FY |X=x1 to FY |X=xk
,

respectively, with (x1, . . . , xk) ∈ X k.

In order to use the results of Lemma 3 we need to impose the following assumption

on the tails of FU |X :

Assumption S4. Say that a multiple equilibrium model (EXU , PX , FU |X) satisfies S4 if

it satisfies S3 and, in addition, the densities hU |X are eventually non-increasing.

The limit results of Lemma 3 then yield the following result:

Theorem 2. Assume (EXU , PX , FU |X) satisfies S4, and consider k independent random

samples (Yj,1, . . . , Yj,Tj
), j = 1, . . . , k, each of size Tj > 1 and drawn from FY |X=xj

with xj ∈ X . If for every j we have: 0 < αTj
< βTj

< 1, limTj→∞ αTj
= 1,

limTj→∞
(

1 − αTj

)

Tj = ∞ and limTj→∞(1 − αTj
)/(1 − βTj

) = ρj with ρj > 1, then

as T → ∞:

q̂Y |X=xj
(αTj

) − µj

σj

d→ Nj with µj ≡ qY |X=xj
(αTj

) and σj ≡
aY

xj
(µj)

√

(1 − αTj
)Tj

,

where aY
xj

is the auxiliary function of FY |X=xj
, aY

xj
= F̄Y |X=xj

/fY |X=xj
, and N1, . . . ,Nk

are k independent standard normal random variables. Moreover, the scaling constants σj

can be consistently estimated via:

σ̂j

σj

≡ σ−1
j

q̂Y |X=xj
(αTj

) − q̂Y |X=xj
(βTj

)

ln ρj

√

(1 − αTj
)Tj

p→ 1.

For any given k > 2, the results of Theorem 2 allow us to determine the asymptotic

behavior of estimates for conditional quantiles under FY |X . With conditional quantile

estimators in hand, we can then test the implications in Theorem 1.

For the purpose of testing, we make an assumption on the rate of growth of the

different samples. The assumption ensures that the (1− αTj
)Tj grow at the same speed,

and that we consider the same αT -quantile, for all k samples. We can then formulate our

results in the standard asymptotic framework, i.e. as T → ∞. Concretely, assume that
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the sample sizes (T1, . . . , Tk) and the corresponding probabilities (αT1 , . . . , αTk
) are such

that for every j there exist αT and cj that satisfy:

αTj
= αT and Tj = cjT, with 0 < αT < 1, lim

T→∞
(1 − αT )T = ∞, and cj > 0. (14)

6 Testing

6.1 Test Hypotheses

From Theorem 1, the observable restriction of our multiple equilibrium model

(EXU , PX , FU |X) is that x1 < . . . < xk implies qY |X=x1(αT ) < . . . < qY |X=xk
(αT ) as

αT → 1. Hence, we are interested in testing weather an increase in the explanatory

variable results in an increase in the conditional quantiles of the dependent variable.

The opposite case of interest is the one in which an increase in X produces no ef-

fect on the conditional quantiles of Y given X, so that we have x1 < . . . < xk and

qY |X=x1(αT ) = . . . = qY |X=xk
(αT ). Those two cases define our alternative and null hy-

potheses, respectively.

More formally, for given values x1 < . . . < xk in X k we test the null hypothesis

H0 : qY |X=x1(αT ) = . . . = qY |X=xk
(αT ), as αT → 1, against an ordered alternative

H1 : qY |X=x1(αT ) 6 . . . 6 qY |X=xk
(αT ), as αT → 1, with strict inequality for at least one

value of j, 1 6 j 6 k.

Our test statistic is a function of estimates for conditional quantiles under FY |X ; from

Theorems 1 and 2 we know that the latter satisfy the following property:

Corollary 3. Assume (EXU , PX , FU |X) satisfies S2 and S4, and let (Yj,1, . . . , Yj,cjT ), j =

1, . . . , k, be k independent random samples of size cjT (with T > 1) drawn from FY |X=xj
,

xj ∈ X . If 0 < αT < βT < 1, limT→∞ αT = 1, limT→∞(1 − αT )T = ∞ and limT→∞(1 −
αT )/(1 − βT ) = ρ, with ρ > 1, then as T → ∞:

x1 < . . . < xk implies µ1 < . . . < µk
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where µj ≡ qY |X=xj
(αT ), and

q̂Y |X=xj
(αT ) − µj

σ̂j

d→ Nj with σ̂j ≡
q̂Y |X=xj

(αT ) − q̂Y |X=xj
(βT )

ln ρ
√

cj(1 − αT )T

where N1, . . . ,Nk are k independent standard normal random variables.

Note that the asymptotic distribution result in Corollary 3 exploits the sample size

growth assumptions made in Equation (14). It follows by applying Slutsky’s Theorem to

the results derived in Theorem 2.

6.2 Exact Test for Order Restrictions

Assume for the moment that all the distribution results from Corollary 3 are exact rather

than being asymptotic, i.e. assume that for some probability αT close to 1 and for large

enough T , (q̂Y |X=x1(αT ), . . . , q̂Y |X=xk
(αT )) is a sample from k independent and normally-

distributed random variables with means (µ1, . . . , µk) and variances (σ̂2
1, . . . , σ̂

2
k). Our

null and alternative hypotheses are then equivalent to H0 : µ1 = . . . = µk and H1 : µ1 6

. . . 6 µk with at least one strict inequality. Note that having observed q̂Y |X=xj
(αT ) and

q̂Y |X=xj
(βT ), the variances σ̂2

j are known. So the implications of our multiple equilibrium

model (EXU , PX , FU |X) can be restated in terms of the means (µ1, . . . , µk) of k independent

Gaussian random variables with known variances.

A likelihood-ratio (LR) test of H0 against H1 is now available from the existing litera-

ture (Bartholomew, 1959a,b; Barlow, Bartholomew, Bremner, and Brunk, 1972; Robert-

son and Wegman, 1978). We shall review Barholomew’s results, as they are instrumental

in showing how the extension of exact results works in the asymptotic case.

We introduce the following notation: q̂ ≡ (q̂Y |X=x1(αT ), . . . , q̂Y |X=xk
(αT ))′, µ ≡

(µ1, . . . , µk)
′ and Σ̂ ≡ diag(σ̂2

1, . . . , σ̂
2
k). Hence, for a given value of T , the k-vector q̂

is multivariate normal with mean µ and diagonal covariance matrix Σ̂. Letting A be a
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(k − 1) × k-matrix defined as:

A ≡











1 −1 (0)
. . . . . .

(0) 1 −1











,

we can write the null and the alternative hypotheses as:

H0 : {Aµ = 0} against H1 : {Aµ 4 0 and Aµ 6= 0} , (15)

where the inequalities 4 and < are understood as component wise.

The test in Equation (15) is based on the likelihood-ratio statistic:

ξ̂LR ≡ −2 ln
max
Aµ=0

L(q̂|µ, Σ̂)

max
Aµ40

L(q̂|µ, Σ̂)
, (16)

where L(q̂|µ, Σ̂) is the likelihood function:

L(q̂|µ, Σ̂) =
1

(2π)k/2(det Σ̂)1/2
exp

[

−(q̂ − µ)′Σ̂−1(q̂ − µ)
]

. (17)

Combining Equations (16) and (17) then yields:

ξ̂LR = min
Aµ=0

(q̂ − µ)′Σ̂−1(q̂ − µ) − min
Aµ40

(q̂ − µ)′Σ̂−1(q̂ − µ). (18)

Barlow, Bartholomew, Bremner, and Brunk (1972) show that the test statistic in

Equation (18)—similar to the χ2 statistic used to test H0 against the most general form

of alternative H2 : µ1 6= . . . 6= µk—is a weighted average of χ2 distributions with d degrees

of freedom (χ2
d) with 0 6 d 6 k − 1, and is denoted χ2

k (χ2
0 denotes a point mass at 0).

The χ2
k distribution of the likelihood-ratio test statistic ξ̂LR depends on the number of

quantiles being compared k, as well as their variances σ̂2
j through the probability weights

attached to each distribution χ2
d. For example, when k = 2 and 3, the distribution of ξ̂LR

is given by:

ξ̂LR
d
=

1

2
χ2(0) +

1

2
χ2(1), for k = 2, (19)

ξ̂LR
d
=

α̂

2π
χ2(0) +

1

2
χ2(1) +

[

1

2
− α̂

2π

]

χ2(2), for k = 3, (20)
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and α̂ ≡ arccos
[

σ̂2
2/

√

(σ̂2
1 + σ̂2

2)(σ̂
2
2 + σ̂2

3)
]

is a constant, −π < α̂ < π.

In the special case where the variances σ̂2
j are equal, Bartholomew (1959b) computes

the χ2
k critical values for a number of values for k (2 6 k 6 12). When the variances are

different, exact critical values for χ2
k are hard to compute analytically if k > 5, though

there is no difficulty in obtaining their numerical values for any k (Barlow, Bartholomew,

Bremner, and Brunk, 1972). Stochastic upper and lower bounds for the distribution of

ξ̂LR have been obtained by Robertson and Wright (1982) and Dardanoni and Forcina

(1998).

6.3 Asymptotic Test

We shall now derive a test for the implication obtained in Corollary 3, where normality

is only asymptotic. Using the notation of Section 6.2, the k-vector Σ̂−1/2(q̂ − µ) is

asymptotically multivariate normal with mean vector 0k and identity covariance matrix

Idk.

Note that the standard way of dealing with asymptotically valid order restriction tests

(Gourieroux, Holly, and Monfort, 1982; Kodde and Palm, 1986) does not apply here, as

the components of the scaling matrix Σ̂ are not all proportional to T−1/2. In order to

make sure that Σ̂ does not become ill-scaled as T gets large—that some of the variance

terms σ̂j become infinitely large compared to others—we assume the following:

Assumption S5. Say that a multiple equilibrium model (EXU , PX , FU |X) satisfies S5 if

it satisfies S4 and, in addition, U is independent of X.

When the distribution FU |X does not depend on X, the same is true for the quantities

involved in the previously derived limit results. In particular, under S5 we have that
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aU
x ◦ F̄−1

U |X=x = aU ◦ F̄−1
U for all x ∈ X , so:

σj

σi

=
aY

xj
(qY |X=xj

(αT ))/
√

cj(1 − αT )T

aY
xi

(qY |X=xi
(αT ))/

√

ci(1 − αT )T

=

√

ci

cj

·
aY

xj
◦ F̄−1

Y |X=xj
(αT )

aY
xi
◦ F̄−1

Y |X=xi
(αT )

∼
√

ci

cj

·
gNxi

(xi)

gNxj
(xj)

as αT → 1, (21)

where the last equality uses the asymptotic proportionality of aY
X ◦ F̄Y |X and aU ◦ F̄U that

was established in Lemma 2 (ii).

Now, consider again the limit results derived in Corollary 3. The asymptotic equiv-

alence result established in Equation (21) guarantees that the scaling constants σj that

control how fast the empirical quantiles q̂Y |X=xj
(αT ) converge to the true quantiles

qY |X=xj
(αT ), are all of the same size. In that case, we have have the following result.

Theorem 4. Assume (EXU , PX , FU |X) satisfies S5. If for T > 1, (Yj,1, . . . , Yj,cjT ), j =

1, . . . , k, are k independent random samples of size cjT drawn from FY |X=xj
, xj ∈ X ,

then as T → ∞, the likelihood-ratio statistic ξ̂LR is asymptotically distributed as χ2
k,

with weights that are consistently estimated by weights obtained in the exact Gaussian

case.

For example, when k = 2 and 3, the asymptotic distribution of ξ̂LR is that derived in

Equations (19)-(20).

It is worth pointing out that the conclusion of Theorem 4 remains valid if, instead of

being independent of X, the distribution FU |X is such that for any (x, x′) ∈ X 2 we have:

lim
v↓0

fU |X=x(F̄
−1
U |X=x(v))

fU |X=x′(F̄−1
U |X=x′(v))

exists, is strictly positive and independent of (x, x′). (22)

The requirement in Equation (22) is weaker than that of independence, since it only

restricts the behavior of the auxiliary function aU
X evaluated at the tail quantiles F̄−1

U |X .

In particular, if the auxiliary function aU
X is constant, as in the case of exponentially dis-

tributed random variables, the requirement in (22) holds without imposing independence

of U and X.
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7 Conclusion

In this paper we design an econometric test for monotone comparative statics predictions

suited for testing models with multiple equilibria. Our approach may be characterized

as nonparametric as we do not make assumptions on the cardinality, location or proba-

bilities over equilibria. In particular, one can implement our test without assuming an

equilibrium selection rule.

First, we show how monotone comparative statics predictions translate into observ-

able implications on the distribution of the dependent variable. In particular, we show

that high enough conditional quantiles of the dependent variable increase when the ex-

planatory variable increases.

Second, we construct a likelihood-ratio test for equality of high conditional quan-

tiles against an ordered alternative, as predicted by the monotone comparative statics

arguments. The test is an asymptotic extension of the “chi-bar squared” test. Even

though the focus of this paper is on quantiles with probabilities close to one, all of our

results—when properly transposed—continue to hold for probabilities close to zero.

Finally, we point out some extensions: our likelihood-ratio test can be accommodated

to test other hypotheses of interest, such as the unrestricted order among conditional

quantiles. Provided that quantile probabilities increase towards one at the same speed

as the sample size—which would satisfy the requirement of “large enough” quantile in

our paper—this would give rise to other limit distributions. It would be interesting to

compare our existing test with one based on such extreme conditional quantiles. In order

to carry out our likelihood-ratio test, we needed to eliminate the nuisance parameters—

quantile variances—by replacing them with their probability limits. An alternative ap-

proach is to use the asymptotic distribution results of the quantile spacings and de-

rive a better approximation to standardized quantiles in the small sample. Finally, a

regression-based approach—in which the conditional quantile is modeled as a function

of the explanatory variable—would offer an interesting alternative way of testing the

monotonicity prediction.
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Appendix A Proofs of results stated in the text

Proof of Lemma 1. Fix x ∈ X and assume F̄U |X=x ∈ R−∞ at ∞. Let Rx : R++ → R++

be given by

Rx(y) ≡ πxNx ·
F̄U |X=x

(

y/gNx(x)
)

F̄Y |X=x(y)
. (23)

Note that Rx is well defined, as from item (iv) in Definition 1 and Equation (2) we know

F̄Y |X=x(y) > 0, for all y > 0. Moreover,

Rx(y) =
πxNx · F̄U |X=x

(

y/gNx(x)
)

πxNx · F̄U |X=x

(

y/gNx(x)
)

[

1 +
∑

16i<Nx

πxi · F̄U |X=x

(

y/gi(x)
)

πxNx · F̄U |X=x

(

y/gNx(x)
)

] . (24)

Given that F̄U |X=x is (−∞)-varying at ∞, we have

lim
y→∞

F̄U |X=x

(

y/gi(x)
)

F̄U |X=x

(

y/gNx(x)
) = lim

z→∞

F̄U |X=x

(

zgNx(x)/gi(x)
)

F̄U |X=x(z)
= 0, (25)

with z = y/gNx(x). Moreover, from item (iii) in Definition 1 we know that πxi/πxNx is

bounded, so

lim
y→∞

Rx(y) = 1, (26)

and

F̄Y |X=x(y) ∼ πxNx · F̄U |X=x

(

y/gNx(x)
)

as y → ∞. (27)

¿From Equation (27), we have

lim
y→∞

F̄Y |X=x(λy)

F̄Y |X=x(y)
= lim

y→∞

F̄U |X=x

(

λy/gNx(x)
)

F̄U |X=x

(

y/gNx(x)
) = lim

z→∞

F̄U |X=x(λz)

F̄U |X=x(z)
,

so F̄Y |X=x ∈ R−∞ at ∞, which together with Equation (27) shows that item (i) holds.

We shall now prove item (ii). Using Lemma 5, F̄−1
U |X=x is 0-varying at 0: for λ > 0,

lim
v↓0

F̄−1
U |X=x(λv)

F̄−1
U |X=x(v)

= 1. (28)

On the other hand, limy→∞ F̄Y |X=x(y) = 0 and Equation (26) together imply that

limy→∞ F̄Y |X=x(y)Rx(y)/πxNx = 0, and

lim
y→∞

F̄Y |X=x(y)Rx(y)/πxNx

F̄Y |X=x(y)
=

1

πxNx

.
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That F̄−1
U |X=x is 0-varying at 0 then implies, by Lemma 6,

lim
y→∞

F̄−1
U |X=x

(

F̄Y |X=x(y)Rx(y)/πxNx

)

F̄−1
U |X=x

(

F̄Y |X=x(y)
) = [πxNx ]

0 = 1. (29)

Now, using the definition of Rx(y) in Equation (23), we have

F̄−1
U |X=x

(

F̄Y |X=x(y)Rx(y)/πxNx

)

F̄−1
U |X=x

(

F̄Y |X=x(y)
) =

y/gxNx(x)

F̄−1
U |X=x

(

F̄Y |X=x(y)
) , (30)

so Equation (29) implies that y/gxNx(x) ∼ F̄−1
U |X=x

(

F̄Y |X=x(y)
)

as y goes to ∞. Letting

v = F̄Y |X=x(y) we then have

F̄−1
Y |X=x(v) ∼ gxNx(x) · F̄−1

U |X=x(v) as v ↓ 0. (31)

Equations (28) and (31) give

lim
v↓0

F̄−1
Y |X=x(λv)

F̄−1
Y |X=x(v)

= 1 for λ > 0,

so F̄−1
Y |X=x is 0-varying at 0 which together with Equations (28) and (31) shows (ii), and

thus completes the proof of Lemma 1.

Proof of Theorem 1. The proof of Theorem 1 follows from Lemma 1 easily by the argu-

ment used in Section 3. We include it here for completeness. Consider (x1, x2) ∈ X 2 such

that x1 < x2. From Lemma 1(i),

F̄Y |X=x1(y)

F̄Y |X=x2(y)
∼ πx1Nx1

· F̄U |X=x1

(

y/gNx1
(x1)

)

πx2Nx2
· F̄U |X=x2

(

y/gNx2
(x2)

) , as y → ∞.

Now note that

F̄U |X=x1

(

y/gNx1
(x1)

)

F̄U |X=x2

(

y/gNx2
(x2)

) =
F̄U |X=x1

(

y/gNx1
(x1)

)

F̄U |X=x1

(

y/gNx2
(x2)

) · F̄U |X=x1

(

y/gNx2
(x2)

)

F̄U |X=x2

(

y/gNx2
(x2)

) . (32)

From item (ii) in Definition 1 we have gNx2
(x2) > gNx1

(x1), and by assumption S1

F̄U |X=x1 ∈ R−∞ at ∞, so

lim
y→∞

F̄U |X=x1

(

y/gNx1
(x1)

)

F̄U |X=x1

(

y/gNx2
(x2)

) = lim
z→∞

F̄U |X=x1

(

z · gNx2
(x2)/gNx1

(x1)
)

F̄U |X=x1(z)
= 0,

where z ≡ y/gNx2
(x2). So the first term on the right-hand side of Equation (32) goes to

0 as y gets large. From Property (12) in Assumption S2 and given x1 < x2, we know
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that the second term of the right-hand side of Equation (32) is bounded as y increases.

Finally, we know that πx1Nx1
/πx2Nx2

< ∞ since from item (iii) in Definition 1 πx2Nx2
> 0.

Combining the facts above,

lim
y→∞

F̄Y |X=x1(y)

F̄Y |X=x2(y)
= 0,

so there is y1 > 0 such that, if y > y1 then F̄Y |X=x1(y) < F̄Y |X=x2(y). Since X is finite,

there is y such that if y > y then F̄Y |X=x(y) < F̄Y |X=x′(y) for all (x, x′) ∈ X 2 with x < x′.

Note that for any x ∈ X and v ∈ (0, 1), F̄−1
Y |X=x(v) = qY |X=x(1 − v). From the above

we know that, for any (x1, x2) ∈ X 2 such that x1 < x2, there is v1 ∈ (0, 1) such that

if v 6 v1 then qY |X=x1(1 − v) < qY |X=x2(1 − v). Equivalently, letting α1 ≡ 1 − v1, for

α ∈ [α1, 1) we have qY |X=x1(α) < qY |X=x2(α). X being finite guarantees that the result

holds for any (x, x′) ∈ X 2 by the same reasoning as above.

Proof of Lemma 2. Fix x ∈ X and assume F̄U |X=x is in Γ with auxiliary function aU
x ; for

Rx defined in Equation (23) we have:

Rx

(

gNx(x)y + gNx(x)λaU
x (y)

)

Rx

(

gNx(x)y
) =

[

πxNx · F̄U |X=x

(

y + λaU
x (y)

)

F̄Y |X=x

(

gNx(x)y + gNx(x)λaU
x (y)

)

] [

F̄Y |X=x

(

gNx(x)y
)

πxNx · F̄U |X=x(y)

]

. (33)

From Equation (26), the left-hand side in Equation (33) converges to 1 as y → ∞. On

the other hand,

lim
y→∞

πxNx · F̄U |X=x

(

y + λaU
x (y)

)

πxNx · F̄U |X=x(y)
= exp(−λ),

since aU
x is the auxiliary function of F̄U |X=x. Then we have:

exp(λ) = lim
y→∞

F̄Y |X=x

(

gNx(x)y
)

F̄Y |X=x

(

gNx(x)y + gNx(x)λaU
x (y)

)

= lim
z→∞

F̄Y |X=x(z)

F̄Y |X=x

(

z + gNx(x)λaU
x (z/gNx(x))

) ,

using the change of variable z ≡ gNx(x)y. Hence F̄Y |X=x ∈ Γ:

lim
y→∞

F̄Y |X=x

(

y + λaY
x (y)

)

F̄Y |X=x(y)
= exp(−λ), (34)

with auxiliary function aY
x defined as aY

x (y) ≡ gNx(x) · aU
x (y/gNx(x)) for all y > 0, which

shows item (i).
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In order to show item (ii) we exploit the fact that for any sequence {ϕs}s>0 of mono-

tone increasing functions ϕs : R
+ → (0, 1), lims→∞ ϕs(x) = ϕ(x) for all continuity points

x > 0 of ϕ, implies lims→∞ ϕ−1
s (z) = ϕ−1(z) for all continuity points z ∈ (0, 1) of ϕ−1

(see, e.g., Lemma 1.9 in de Haan, 1974). Let then

ϕs(y) ≡ 1 − F̄U |X=x(s + y aU
x (s))

F̄U |X=x(s)
for all y > 0.

That F̄U |X=x ∈ Γ implies lims→∞ ϕs(y) = 1 − exp(−y) for all y > 0. Letting ϕ(y) ≡
1 − exp(−y), we then have for t ∈ (0, 1):

lim
s→∞

F̄−1
U |X=x

(

(1 − t)F̄U |X=x(s)
)

− s

aU
x (s)

= lim
s→∞

ϕ−1
s (t) = ϕ−1(t) = − ln(1 − t).

Letting v ≡ F̄U |X=x(s) and µ ≡ 1 − t gives:

lim
v↓0

F̄−1
U |X=x(vµ) − F̄−1

U |X=x(v)

aU
x

(

F̄−1
U |X=x(v)

) = − ln µ for µ ∈ (0, 1). (35)

Thus F̄−1
U |X=x ∈ Π as in Definition 4 with auxiliary function aU

x ◦ F̄−1
U |X=x.

Moreover, for any λ > 0, letting µ ≡ λ and ν ≡ λ−1 we have:

aU
x

(

F̄−1
U |X=x(λv)

)

aU
x

(

F̄−1
U |X=x(v)

) =

−
[

F̄−1
U |X=x(µv) − F̄−1

U |X=x(v)

aU
x

(

F̄−1
U |X=x(v)

)

]

·
[

aU
x

(

F̄−1
U |X=x(λv)

)

F̄−1
U |X=x(λνv) − F̄−1

U |X=x(λv)

]

. (36)

Equations (35) and (36) together imply:

lim
v↓0

aU
x ◦ F̄−1

U |X=x(λv)

aU
x ◦ F̄−1

U |X=x(v)
=

ln µ

− ln ν
= 1, (37)

so aU
x ◦ F̄−1

U |X=x ∈ R0 at 0. We now study F̄Y |X=x: if for any x ∈ X , we let ϕx,s(y) ≡
1 − F̄Y |X=x

(

s + y aY
x (s)

)

/F̄Y |X=x(s) for all y > 0, we have lims→∞ ϕx,s(y) = ϕ(y). Same

reasoning as previously then implies:

lim
v↓0

F̄−1
Y |X=x(vµ) − F̄−1

Y |X=x(v)

aY
x

(

F̄−1
Y |X=x(v)

) = − ln µ for µ ∈ (0, 1). (38)

So F̄−1
Y |X=x ∈ Π as in Definition 4 with auxiliary function aY

x ◦ F̄−1
Y |X=x. Equation (38) and

the fact that:

aY
x

(

F̄−1
Y |X=x(λv)

)

aY
x

(

F̄−1
Y |X=x(v)

) = −
[

F̄−1
Y |X=x(µv) − F̄−1

Y |X=x(v)

aY
x

(

F̄−1
Y |X=x(v)

)

]

·
[

aY
x

(

F̄−1
Y |X=x(λv)

)

F̄−1
Y |X=x(λνv) − F̄−1

Y |X=x(λv)

]

,
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with λ > 0, µ ≡ λ and ν ≡ λ−1, then imply that aY
x ◦ F̄−1

Y |X=x ∈ R0 at 0.

Given Equation (31) and the definition of aY
x it is not surprising to see that

aY
x

(

F̄−1
Y |X=x(v)

)

∼ gNx(x) · aU
x

(

F̄−1
U |X=x(v)

)

as v ↓ 0; however we need a formal proof

of that statement. We start by showing that:

lim
s→∞

F s
Y |X=x(Asλ + bs) = exp[− exp(−λ)], (39)

with As ≡ aY
x (bs) and bs ≡ F̄−1

Y |X=x(1/s). In Equation (34) let y ≡ F̄−1
Y |X=x(1/s) so y → ∞

as s → ∞; then

lim
s→∞

F̄Y |X=x

(

F̄−1
Y |X=x(1/s) + λaY

x

(

F̄−1
Y |X=x(1/s)

)

)

F̄Y |X=x

(

F̄−1
Y |X=x(1/s)

)

= lim
s→∞

s · F̄Y |X=x

(

aY
x

(

F̄−1
Y |X=x(1/s)

)

λ + F̄−1
Y |X=x(1/s)

)

= exp(−λ). (40)

Let bs ≡ F̄−1
Y |X=x(1/s) and As ≡ aY

x (bs); the last equality in Equation (40) together with

Lemma 2.2.2 in de Haan (1970) then imply Equation (39). We now derive a similar

equality involving FU |X=x: the last equality in Equation (40) and the tail equivalence

property in Equation (27) together imply:

lim
s→∞

s · F̄U |X=x

(

(

As/gNx(x)
)

λ +
(

bs/gNx(x)
)

)

= exp(−λ − ln πxNx).

Using again Lemma 2.2.2 in de Haan (1970) then gives:

lim
s→∞

F s
U |X=x

(

(

As/gNx(x)
)

λ +
(

bs/gNx(x)
)

)

= exp
(

− exp(−λ − ln πxNx)
)

. (41)

On the other hand, F̄U |X=x ∈ Γ as in Definition 3 with auxiliary function aU
x , together

with Lemma 2.2.2 in de Haan (1970) imply:

lim
s→∞

F s
U |X=x(Ãsλ + b̃s) = exp

(

− exp(−λ)
)

, (42)

with Ãs ≡ aU
x (b̃s) and b̃s ≡ F̄−1

U |X=x(1/s). Combining Equations (41) and (42) and

applying the results of Lemma 2.4.1 in de Haan (1970) on the change of norming constants

(with A = 1 and B = ln πxNx), then gives:
(

As/gNx(x)
)

Ãs

→ 1 and

(

bs/gNx(x)
)

− b̃s

Ãs

→ ln πxNx as s → ∞.

So from the first of the above limit results we get:

aY
x (F̄−1

Y |X=x(v)) ∼ gNx(x) · aU
x (F̄−1

U |X=x(v)) as v ↓ 0,

which completes the proof of item (ii).
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Proof of Lemma 3. Given a random sample (Y1, . . . , YT ) let {Y (T )
(k) }T

k=1 be the ascending

order statistics: Y
(T )
(1) 6 . . . 6 Y

(T )
(T ) . Then for any αT , 0 < αT < 1, we have:

q̂(αT ) = Y
(T )
(m) with m ≡ ⌊αT T ⌋ + 1, (43)

where ⌊·⌋ denotes the greatest integer function, ⌊x⌋ ≡ max{n ∈ N : n 6 x} for x > 0.

Note that m depends on T . Similarly, for βT : q̂(βT ) = Y
(T )
(k) where k ≡ ⌊βT T ⌋ + 1.

First we record the following facts, which follow trivially from the definition of m and

the hypotheses on αT in the theorem:

lim
T→∞

T − m = ∞, (44)

lim
T→∞

T − m

T
= 0, (45)

lim
T→∞

T − m

(1 − αT )T
= lim

T→∞

T − m + 1

(1 − αT )T
= 1. (46)

The hypotheses on βT imply properties (44), (45), and (46) for k, and, in addition, that

lim
T→∞

T − m

T − k
= ρ. (47)

Second, we have:

√

T (1 − αT )

[

q̂(αT ) − q(αT )

a(q(αT ))

]

=
√

T (1 − αT )

[

Y
(T )
(⌊αT T ⌋+1) − F̄−1(1 − αT )

a(F̄−1(1 − αT ))

]

=
√

T − m + 1

[

Y
(T )
(m) − F̄−1((T − m)/T )

a(F̄−1((T − m)/T ))
+

F̄−1((T − m)/T ) − F̄−1(1 − αT )

a(F̄−1((T − m)/T ))

]

· a(F̄−1((T − m)/T ))

a(F̄−1(1 − αT ))

√

T (1 − αT )

T − m + 1
, (48)

and

q̂(βT ) − q̂(αT )

a(q(αT ))
− ln ρ

=

{[

Y
(T )
(k) − Y

(T )
(m)

a(Y
(T )
(m) )

− ln ρ

]

a(Y
(T )
(m) )

a(F̄−1((T − m)/T ))

+ ln ρ

[

a(Y
(T )
(m) )

a(F̄−1((T − m)/T ))
− 1

]}

a(F̄−1((T − m)/T ))

a(F̄−1(1 − αT ))
. (49)
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The proof of the theorem is done in three steps. We first show (STEP 1) that:

√
T − m + 1

[

Y
(T )
(m) − F̄−1((T − m)/T )

a(F̄−1((T − m)/T ))

]

d→ N , (50)

Y
(T )
(k) − Y

(T )
(m)

a(Y
(T )
(m) )

P→ ln ρ, (51)

where N is a standard Gaussian random variable. We then show (STEP 2):

lim
T→∞

√
T − m + 1

[

F̄−1((T − m)/T ) − F̄−1(1 − αT )

a(F̄−1((T − m)/T ))

]

= 0 (52)

lim
T→∞

a(F̄−1((T − m)/T ))

a(F̄−1(1 − αT ))
= 1. (53)

Finally, we show (STEP 3):

a(Y
(T )
(m) )

a(F̄−1((T − m)/T ))

p→ 1. (54)

The first limit result of Lemma 3 then follows from (48) by (50), (52) and (53) using (46)

and Lemma 2.4.1 in de Haan (1970). The second limit result in Lemma 3 follows from

(49) by (51) and (54) using (53), (46), and Slutsky’s Theorem.

STEP 1: This step takes a key idea from the proof of Theorem 3.1 in Dekkers and

de Haan (1989). Let A1, . . . , AT be independent and identically distributed standard

exponential random variables. Let A
(T )
(1) 6 . . . 6 A

(T )
(T ) be the ascending order statistics of

(A1, . . . , AT ). Then, by using the probability integral transform, we have {Y (T )
(m)}T

m=1
d
=

{F̄−1(exp(−A
(T )
(m)))}T

m=1.

Now, let W (x) ≡ F̄−1(exp(−x)) for x > 0; we have Y
(T )
(m)

d
= W (A

(T )
(m)) and W (ln(T/(T−

m))) = F̄−1((T − m)/T ). Moreover,

a (W (x)) =
exp(−x)

f(W (x))
= W ′(x).

Let ηT ≡ ln(T/(T − m)); then, a
(

F̄−1 ((T − m) /T )
)

= W ′(ηT ). So the expression in

Statement (50) can be written as:

√
T − m + 1

[

Y
(T )
(m) − F̄−1((T − m)/T )

a(F̄−1((T − m)/T ))

]

d
=

√
T − m + 1

[

W (A
(T )
(m)) − W (ηT )

W ′(ηT )

]

d
=

√
T − m + 1

∫ ZT /
√

T−m+1

0

W ′(ηT + s)

W ′(ηT )
ds, (55)
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where ZT ≡
√

T − m + 1[A
(T )
(m) − ln(T/(T − m))].

Then, by Lemma 10, ZT
d→ N1 as T → ∞. But Lemma 7(i) and Statement (41) imply

that the integrand on the right-hand side of (55) converges uniformly to 1 on compact

intervals, as T → ∞. So Lemma 8 implies Statement (50).

The proof of Statement (51) is similar. We have:

Y
(T )
(k) − Y

(T )
(m)

a(Y
(T )
(m) )

− ln ρ

d
=

W (A
(T )
(k) ) − W (A

(T )
(m))

W ′(A
(T )
(m))

− ln ρ

d
=

[
√

T − m

ρ − 1

∫ VT /
q

T−m
ρ−1

0

W ′(A
(T )
(m) + ln ρ + s)

W ′(A
(T )
(m))

ds

]

√

ρ − 1

T − m

+

∫ ln ρ

0

[

W ′(A
(T )
(m) + s)

W ′(A
(T )
(m))

− 1

]

ds, (56)

where VT ≡
√

(T − m)/(ρ − 1)[A
(T )
(k) − A

(T )
(m) − ln ρ]. Note that {VT} and {A(T )

(m)} are

independent (Renyi, 1953) and that A
(T )
(m)

as→ ∞ (see, e.g. Theorem 4 in Watts (1980)).

By Lemma 10, we have VT
d→ N2 as T → ∞, and the integrand in the first term of

Equation (56) converges uniformly to 1 on compact intervals. Hence, using Lemma 8

and Statement (39) the first term in brackets in Equation (56) converges in distribution.

It is multiplied by [(ρ − 1)/(T − m)]−1/2, which goes to zero. So the first summand of

expression (56) converges in probability to 0 (it converges in distribution to the constant

0, so it converges in probability). On the other hand, the second summand in expression

(56) converges to 0 a.s.: Note that A
(T )
(m)

as→ ∞ a.s. (by, e.g. Theorem 4 in Watts (1980))

and the integrand converges to 0 uniformly on compact intervals (Lemma 7 (i)), so the

integral converges to 0 for a full measure of realizations of {A(T )
(m)}. This establishes

Statement (51).
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STEP 2: We now prove (52) and (53). Using the notation in Step 1:

√
T − m + 1

[

F̄−1((T − m)/T ) − F̄−1(1 − αT )

a(F̄−1((T − m)/T ))

]

=
√

T − m + 1

[

W (ηT ) − W (ln(1/(1 − αT )))

W ′(ηT )

]

=
√

T − m + 1

∫ 0

− ln(1−αT )−ηT

W ′(ηT + s)

W ′(ηT )
ds

∼
√

T − m + 1

[

0 − ln
T − m

(1 − αT )T

]

as T → ∞. (57)

The equivalence in Statement (57) follows by exchanging the limit and the integral,

using the uniform convergence established in Lemma 7(i), and the fact that Statement

(46) implies:

lim
T→∞

[− ln(1 − αT ) − ηT ] = lim
T→∞

ln
T − m

(1 − αT )T
= 0.

Using |ln {(T − m)/[(1 − αT )T ]}| 6 |(T − m)/[(1 − αT )T ] − 1|, we then get:

√
T − m + 1

∣

∣

∣

∣

ln
T − m

(1 − αT )T

∣

∣

∣

∣

6
√

T − m + 1

∣

∣

∣

∣

T − m

(1 − αT )T
− 1

∣

∣

∣

∣

=
√

T − m + 1

∣

∣

∣

∣

αT T − ⌊αT T ⌋ − 1

(1 − αT )T

∣

∣

∣

∣

6 2

√
T − m + 1

(1 − αT )T
→ 0, as T → ∞,

where the convergence to 0 follows from Statement (46). By Statement (57), then, this

proves (52). To prove (53), note that Lemma 2(ii) implies that a ◦ F̄−1 ∈ R0 at 0. So

Statements (45) and (46), and Lemma 6 give (53).

STEP 3: The proof of (54), in turn is similar to that of (50) in Step 1. We have:

a(Y
(T )
(m) )

a(F̄−1((T − m)/T ))
− 1

d
=

W ′(A
(T )
(m)) − W ′(ηT )

W ′(ηT )

d
=

[

√
T − m

∫ ZT /
√

T−m+1

0

W ′′(ηT + s)

W ′(ηT )
ds

]

1√
T − m

, (58)

where as previously ZT =
√

T − m + 1[A
(T )
(m) − ln(T/(T − m))]. Then, by Lemma 10,

ZT
d→ N1 as T → ∞. But Lemma 7(ii) implies that the integrand on the right-hand side

of (58) converges uniformly to 0 on compact intervals. So Lemma 9 and Statement (39)

imply Statement (54).
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Proof of Theorem 2. If (EXU , PX , FU |X) satisfies S4 then it satisfies S3; hence we can use

Lemma 2(i) to show that for any xj ∈ X , 1 6 j 6 k, the conditional distribution tails

F̄Y |X=xj
∈ Γ. Moreover, from Equation (2) we know that for any 1 6 j 6 k,

fY |X=xj
(y) =

Nxj
∑

i=1

πxji

gi(xj)
· fU |X=xj

( y

gi(xj)

)

for any y > 0.

Under S4 the densities fU |X=xj
are all eventually non-decreasing; hence the same holds

for fY |X=xj
. If for each 1 6 j 6 k, we have 0 < αTj

< βTj
< 1, limTj→∞ αTj

= 1,

limTj→∞
(

1 − αTj

)

Tj = ∞ and limTj→∞(1 − αTj
)/(1 − βTj

) = ρj with ρj > 1, then the

results of Lemma 3 apply for all 1 6 j 6 k, i.e.
√

Tj(1 − αTj
)
q̂Y |X=xj

(αTj
) − qY |X=xj

(αTj
)

aY
xj

(

qY |X=xj
(αTj

)
)

d→ Nj,

and
q̂Y |X=xj

(βTj
) − q̂Y |X=xj

(αTj
)

aY
xj

(qY |X=xj
(αTj

))

p→ ln ρj,

where aY
X ≡ F̄Y |X/fY |X is the auxiliary function of FY |X and Nj, 1 6 j 6 k, are k

independent standard normal random variables. The conclusion Theorem 2 follows by

letting µj ≡ qY |X=xj
(αTj

) and σj ≡ aY
xj

(µj)/
√

Tj(1 − αTj
), and using the independence

of different samples (Yj,1, . . . , Yj,Tj
).

Proof of Theorem 4. The proof is done in five steps:

STEP1: we work with the first minimization problem in Equation (18):

min
µ

(µ − q̂)′Σ̂−1(µ − q̂), (59)

subject to Aµ = 0.

Let L : R
2k−1 → R be the corresponding Lagrangian L(µ, λ) = (µ− q̂)′Σ̂−1(µ− q̂)+λ′Aµ,

where λ denotes the (k − 1)-vector of Lagrange multipliers (dual variables) associated

with the constraint Aµ = 0. A is full rank and the (Lagrange) dual function g : R
k−1 →

R ∪ {−∞} is g(λ) ≡ infµ L(µ, λ) = −1
4
λ′AΣ̂A′λ + λ′Aq̂. The dual problem is then:

max
λ

−1

4
λ′AΣ̂A′λ + λ′Aq̂, (60)

with λ unconstrained. The solutions to the dual and primal problems (60) and (59) are:

λ0 = 2(AΣ̂A′)−1Aq̂, (61)

µ0 = q̂ − 1

2
Σ̂A′λ0 = q̂ − Σ̂A′(AΣ̂A′)−1Aq̂, (62)
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and we have:

(µ0 − q̂)′Σ̂−1(µ0 − q̂) = q̂′A′(AΣ̂A′)−1Aq̂ = −1

4
λ′

0AΣ̂A′λ0 + λ′
0Aq̂. (63)

Similarly, we consider the dual of the second minimization problem in (18):

min
µ

(µ − q̂)′Σ̂−1(µ − q̂), (64)

subject to Aµ 4 0.

The dual is:

max
λ

−1

4
λ′AΣ̂A′λ + λ′Aq̂, (65)

subject to λ < 0.

Letting λ1 and µ1 denote the solutions to the dual and primal problems (65) and (64)

we again have:

(µ1 − q̂)′Σ̂−1(µ1 − q̂) = −1

4
λ′

1AΣ̂A′λ1 + λ′
1Aq̂. (66)

STEP 2: using Equations (63) and (66) the likelihood-ratio statistic in (18) then

equals:

ξ̂LR = max
λ

(

−1

4
λ′AΣ̂A′λ + λ′Aq̂

)

− max
λ:λ<0

(

−1

4
λ′AΣ̂A′λ + λ′Aq̂

)

= max
λ

[

q̂′Σ̂−1q̂ −
(

1

2
Σ̂A′λ − q̂

)′
Σ̂−1

(

1

2
Σ̂A′λ − q̂

)]

− max
λ:λ<0

[

q̂′Σ̂−1q̂ −
(

1

2
Σ̂A′λ − q̂

)′
Σ̂−1

(

1

2
Σ̂A′λ − q̂

)]

= min
λ:λ<0

[(

1

2
Σ̂A′λ − q̂

)′
Σ̂−1

(

1

2
Σ̂A′λ − q̂

)]

−min
λ

[(

1

2
Σ̂A′λ − q̂

)′
Σ̂−1

(

1

2
Σ̂A′λ − q̂

)]

= min
λ:λ<0

[(

1

2
Σ̂A′λ0 −

1

2
Σ̂A′λ

)′
Σ̂−1

(

1

2
Σ̂A′λ0 −

1

2
Σ̂A′λ

)]

,

where the last equality follows by a simple geometric argument. Combining the above

with Equations (61)-(62) then gives:

ξ̂LR = min
λ:λ<0

∥

∥

∥

∥

Σ̂−1/2 (q̂ − µ0) −
1

2
Σ̂1/2A′λ

∥

∥

∥

∥

2

,

37



where ‖X‖2 ≡ X ′X for any X ∈ R
k. Letting R̂ ≡ (AΣ̂A′)−1AΣ̂1/2 and ν ≡ 1

2
Σ̂1/2A′λ (so

that λ = 2R̂ν) we then have:

ξ̂LR = min
ν:R̂ν<0

∥

∥

∥
Σ̂−1/2 (q̂ − µ0) − ν

∥

∥

∥

2

. (67)

STEP3: we consider the dual of the minimization problem in Equation (67):

max
β:β<0

[

−1

4
β′R̂R̂′β − β′R̂Σ̂−1/2(q̂ − µ0)

]

, (68)

where β is a (k − 1)-vector of Lagrange multipliers. Note that

−1

4
β′R̂R̂′β − β′R̂Σ̂−1/2(q̂ − µ0)

=
∥

∥

∥
(AΣ̂A′)−1/2A(q̂ − µ0)

∥

∥

∥

2

−
∥

∥

∥

1
2
(AΣ̂A′)−1/2β + (AΣ̂A′)−1/2A(q̂ − µ0)

∥

∥

∥

2

,

so the quantity in Equation (68) is equivalent to:

∥

∥

∥
(AΣ̂A′)−1/2A(q̂ − µ0)

∥

∥

∥

2

− min
β:β<0

∥

∥

∥

∥

1

2
(AΣ̂A′)−1/2β + (AΣ̂A′)−1/2A(q̂ − µ0)

∥

∥

∥

∥

2

. (69)

Now, let:

Ẑ ≡ −(AΣ̂A′)−1/2A(q̂ − µ0) and γ ≡ 1

2
(AΣ̂A′)−1/2β (70)

(so β = 2(AΣ̂A′)1/2γ); combining Equations (67)-(69) then yields:

ξ̂LR = ‖Ẑ‖2 − min
γ:(AΣ̂A′)1/2γ<0

‖Ẑ − γ‖2. (71)

Let PĈẐ denote the orthogonal projection of Ẑ on the cone Ĉ, defined as: Ĉ ≡
{

γ ∈
R

k−1 : (AΣ̂A′)1/2γ < 0
}

. The LR statistic in Equation (71) then equals:

ξ̂LR = ‖PĈẐ‖2. (72)

STEP 4: under the null hypothesis H0 we have Aµ = 0 (in addition to Aµ0 = 0)

so that the quantity in Equation (70) can be written as Ẑ = BV , with B ≡
−(AΣ̂A′)−1/2AΣ̂1/2 and V ≡ Σ̂−1/2(q̂−µ). Under conditions of Corollary 3, the k-vector

V converges in distribution to V
d→ N (0k, Idk) as T → ∞, and the (k − 1) × k-matrix

B is such that BB′ = Idk−1; hence as T → ∞, we have Ẑ
d→ Z ≡ N (0k−1, Idk−1), under

the null hypothesis H0. Now, for every j, 1 6 j 6 k, let:

σj ≡
aY

xj
(qY |X=xj

(αT ))
√

cjT (1 − αT )
,

38



and consider the matrix σ−2
1 (AΣ̂A′); its entries are:

σ−2
1 (AΣ̂A′) =















σ̂2
1

σ2
1

+
σ2
2

σ2
1

σ̂2
2

σ2
2

−σ2
2

σ2
1

σ̂2
2

σ2
2

(0)

−σ2
2

σ2
1

σ̂2
2

σ2
2

σ2
2

σ2
1

σ̂2
2

σ2
2

+
σ2
3

σ2
1

σ̂2
3

σ2
3

−σ2
3

σ2
1

σ̂2
3

σ2
3

. . .

(0) −σ2
k−1

σ2
1

σ̂2
k−1

σ2
k−1

σ2
k−1

σ2
1

σ̂2
k−1

σ2
k−1

+
σ2

k

σ2
1

σ̂2
k

σ2
k















¿From Lemma 3 and Theorem 2 we know that for every j, 1 6 j 6 k, σ−2
j σ̂2

j

p→ 1.

Moreover, using Lemma 2(ii), and the fact that FU |X does not depend on X so we can

write it as FU |X = FU with auxiliary function aU , we have:

σj

σ1

∼
√

c1

cj

·
gNxj

(xj)

gNx1
(x1)

· aU(F̄U
−1

(αT ))

aU(F̄U
−1

(αT ))
=

√

c1

cj

·
gNxj

(xj)

gNx1
(x1)

,

so as T → ∞ we have σ−2
1 (AΣ̂A′)

p→ Ω with a symmetric (k − 1) × (k − 1)-matrix Ω

given by:

Ω ≡

















1 +
c1·gNx2

(x2)2

c2·gNx1
(x1)2

− c1·gNx2
(x2)2

c2·gNx1
(x1)2

(0)

− c1·gNx2
(x2)2

c2·gNx1
(x1)2

c1·gNx2
(x2)2

c2·gNx1
(x1)2

+
ct1·gNx3

(x3)2

c3·gNx1
(x1)2

− ct1·gNx3
(x3)2

c3·gNx1
(x1)2

. . . . . .

(0) − c1·gNxk−1
(xk−1)2

ck−1·gNx1
(x1)2

c1·gNxk−1
(xk−1)

2

ck−1·gNx1
(x1)2

+
c1·gNxk

(xk)2

ck·gNx1
(x1)2

















(73)

Hence, using the fact that Ĉ equals Ĉ =
{

γ ∈ R
k−1 : σ−2

1 (AΣ̂A′)1/2γ < 0
}

, we have that

the minimand in Equation (71) converges in probability to a well defined limit:

ξ̂LR
p→ ξLR ≡ ‖Z‖2 − min

γ:Ω1/2γ<0
‖Z − γ‖2 = ‖PCZ‖2, (74)

where Z
d
= N (0k−1, Idk−1), and PCZ denotes the orthogonal projection of Z on the cone

C ≡
{

γ ∈ R
k−1 : Ω1/2γ < 0

}

with Ω as defined in Equation (73).

STEP 5: In order to determine the distribution of ξLR in Equation (74) we use the

following lemma:

Lemma 4 (Gourieroux, Holly, and Monfort (1982)). Let Z be a standard normal random

vector of dimension k − 1 > 1, i.e. Z
d
= N (0k−1, Idk−1) and let C be a nonsingular

symmetric (k − 1) × (k − 1)-matrix whose columns are denoted Cj, j = 1, . . . , k − 1. To

each vector Cj, j = 1, . . . , k − 1, we associate a vector C⊥
j ∈ R

k−1 such that: C⊥
j is
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orthogonal to any Ci, i 6= j, and C ′
jC

⊥
j < 0. For each subset S of the set {1, . . . , k − 1}

we define the cone:

CS ≡
{

y ∈ R
k−1 : y =

k−1
∑

i=1

αiAi, with αi 6 0, i = 1, . . . , k − 1, and

Ai = Ci when i /∈ S and Ai = C⊥
i when i ∈ S

}

.

Consider the orthogonal projection of Z on the cone C(1,...,k−1), denoted PC(1,...,k−1)
Z. Then

the distribution of ‖PC(1,...,k−1)
Z‖2 is a mixture of chi-square distributions:

‖PC(1,...,k−1)
Z‖2 d

=
k−1
∑

d=0

ω(d)χ2(d) with ω(d) =
∑

S:dim S=d

Pr{PC(1,...,k−1)
Z ∈ CS},

where the sequence of weights ω(d), d = 0, . . . , k−1 satisfies ω(d) > 0 and
∑k−1

d=0 ω(d) = 1

and χ2(0) denotes the point mass distribution at zero.

Apply Lemma 4 to the (k − 1) × (k − 1)-matrix Ω1/2 by letting C ≡ Ω1/2. Using

the notation from Lemma 4, we then have that C = C{1,...,k−1}. Combining Lemma 4

with Equation (74) then yields the result of Theorem 4. Note that the entries of Ω

can be consistently estimated using σ̂−2
1 (AΣ̂A′); hence the probability weights ω(d) can

be consistently estimated by ω̂(d), where ω̂(d) are the weights obtained in the exact

Gaussian case.
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Appendix B Auxiliary Lemmas

Lemmas 5, 6 and 7 are simple translations of results in de Haan (1970) to our problem.

Lemmas 8, 9 and 10 present more substantial preliminary results we shall need in the

proof of Lemma 3. In the sequel, H̄ is a distribution tail H̄ : R++ → (0, 1) and H̄−1 the

corresponding quantile function H̄−1 : (0, 1) → R++.

Lemma 5. If H̄ ∈ R−∞ at ∞, then H̄−1 ∈ R0 at 0.

Proof of Lemma 5. Let U(x) ≡ H̄(x) for all x > 0; U is non-increasing. If U

is −∞-varying at ∞, then by Corollary 1.2.1 (5) in de Haan (1970), the function

x 7→ inf{y|U(y) 6 1/x} is 0-varying at ∞. It is easy to verify that this function is x 7→
H̄−1(1/x). Then for λ > 0, limy↓0 H̄−1(λy)/H̄−1(y) = lims→∞ H̄−1(λ/s)/H̄−1(1/s) = 1

where s ≡ 1/y. Thus H̄−1 is 0-varying at 0.

Lemma 6. If H̄−1 ∈ R0 at 0, then for all sequences {aN} and {a′
N} of positive numbers

with limN→∞ aN = limN→∞ a′
N = 0 and limN→∞ aN/a′

N = c (with 0 < c < ∞), we have

lim
N→∞

H̄−1(aN)

H̄−1(a′
N)

= 1.

Proof of Lemma 6. Let U(x) ≡ H̄−1(1/x) for all x > 1 so U ∈ R0 at ∞. Let {αN}
and {α′

N} be sequences of positive numbers with αN ≡ 1/aN and α′
N ≡ 1/a′

N so that

limN→∞ αN = limN→∞ α′
N = ∞ and limN→∞ αN/α′

N = 1/c (0 < 1/c < ∞). By apply-

ing Corollary 1.2.1 (2) in de Haan (1970) we then have limN→∞ H̄−1(aN)/H̄−1(a′
N) =

limN→∞ U(αN)/U(α′
N) = (1/c)0 = 1.

Lemma 7. Consider a distribution tail H̄ ∈ Γ with auxiliary function a. Let H be twice

differentiable on R++ with a density h that is eventually non-increasing. Let W (x) ≡
H̄−1(exp(−x)), for x > 0. Then W is twice continuously differentiable on R++ with

W ′(x) = a[H̄−1(exp(−x))], for x > 0, and for any real interval [a, b] we have:

(i) limx→∞ W ′(x + s)/W ′(x) = 1 , uniformly for s in [a, b];

(ii) limx→∞ W ′′(x + s)/W ′(x) = 0 , uniformly for s in [a, b].
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Proof of Lemma 7. First we prove (i). Note that a (W (x)) = exp(−x)/h(W (x)) =

W ′(x). From Lemma 2 we know that a ◦ H̄−1 ∈ R0 at 0, so

lim
x→∞

W ′(x + s)

W ′(x)
= lim

x→∞

a(H̄−1(exp(−x − s)))

a(H̄−1(exp(−x)))
= 1, for s > 0. (75)

By Corollary 1.2.1 in de Haan (1970), the convergence is uniform on intervals [a, b] with

a > 0. This implies that the convergence is uniform on arbitrary intervals [a, b] by the

change of variables y = x− |a| − η, for some η > 0 (and for x > |a|+ η) by the resulting

uniform convergence on [η, b + |a| + η].

We now prove (ii). First note that a (W (x)) = W ′(x) implies that

W ′′(x + s)

W ′(x)
=

[

W ′(x + s)

W ′(x)

]

a′(W (x + s)). (76)

The bracketed term on the right-hand side of Equation (76) converges to 1 uniformly

on [a, b] by item (i) of the Lemma. We shall prove that a′(W (x + s)) → 0 as x → ∞
uniformly on [a, b]; combined, these two properties establish (ii).

Now a(x) = H̄(x)/h(x), so a′(x) = −1− H̄(x)h′(x)/[h(x)]2. Then, H̄ ∈ Γ implies, by

Theorem 2.7.4 in de Haan (1970) (or Proposition 1.18 in Resnick (1987)), that

lim
x→∞

H̄(x)h′(x)

[h(x)]2
= −1, i.e. lim

x→∞
a′(x) = 0. (77)

Fix x > 0 large enough so that x + a > 0. The range of a′(W (x + s)) when s ∈ [a, b]

is the same as the range of a′(y) when y ∈ [W (x + a),W (x + b)], as W is monotone

increasing. Since a′ is continuous, we can let y(x) be such that

a′(y(x)) = sup
y∈[W (x+a),W (x+b)]

a′(y). (78)

Now, y(x) → ∞ as x → ∞ because W is monotone increasing. Then the right-hand-side

of Equation (78) converges to 0 as x → ∞, because a′ converges to 0 (77). This proves

the needed uniform convergence of a′(W (x + s)) in Equation (76).

Lemma 8. Let {cT} be a sequence of strictly positive real numbers such that limT→∞ cT =

∞, and consider f : R → R. Let {XT} and {YT} be two independent stochastic processes.

If

1. XT
d→ X, as T → ∞, for some X with continuous distribution F ,

2



2. YT
as→ ∞, as T → ∞,

3. for each K > 0, limy→∞ f(x + y) = 1 uniformly in x ∈ [−K,K].

Then

cT

∫ XT /cT

0

f (x + YT ) dx
d→ X, as T → ∞.

Proof of Lemma 8. Fix a realization {yT} of {YT} such that limT→∞ yT = ∞; the almost

sure convergence in item 2 ensures that {yT} with limT→∞ yT = ∞ have full measure.

Let z ∈ R+ and denote by BT the event

{

cT

∫ XT /cT

0

f (x + yT ) dx 6 z

}

.

Let ε > 0. We shall prove that there is a T ∗ such that T > T ∗ implies that

|P (BT ) − F (z)| < ε; here P denotes the probability measure on the space on which

{XT} is defined.

Fix δ > 0 such that F (z/(1 − δ)) − F (z/(1 + δ)) < ε/4. Let K ∈ R be large enough

that K > z/(1 − δ), F (−K) < ε/4 and 1 − F (K) < ε/4. Since XT
d→ X, there is T1

such that n > T1 implies

P{|XT | > K} < ε/2 (79)

F (z/(1 + δ)) − ε/4 < P{XT 6 z/(1 + δ)} (80)

P{XT 6 z/(1 − δ)} < F (z/(1 − δ)) + ε/4 (81)

Let BK
T = BT ∩ {|XT | 6 K}. Then, by Statement (79), T > T1 implies that P (BT ) −

P (BK
T ) 6 P{|XT | > K} < ε/2.

The convergence in item 3 is uniform on [−K,K], so there is T ∗ such that T ∗ > T1

and such that T > T ∗ implies that, for all x̃ ∈ [−K,K], (1 − δ) < f(x̃ + yT ) < (1 + δ).

Then, T > T ∗ implies

x̃(1 − δ) < cT

∫ x̃/cT

0

f (x + yT ) dx < x̃(1 + δ),

if x̃ ≥ 0, and

x̃(1 + δ) < cT

∫ x̃/cT

0

f (x + yT ) dx < x̃(1 − δ),
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if x̃ < 0. Then P {XT (1 + δ) 6 z,XT > 0} 6 P (BK
T ) ∩ {XT > 0} 6

P {XT (1 − δ) 6 z,XT > 0}. And since z > 0, P {XT (1 − δ) 6 z,XT < 0} = P (BK
T ) ∩

{XT < 0} = P {XT (1 + δ) 6 z,XT < 0}. Hence, P {XT (1 + δ) 6 z} 6 P (BK
T ) 6

P {XT (1 − δ) 6 z}.

Tow, |F (z) − P {XT (1 + δ) 6 z}| 6 |F (z) − F (z/(1 + δ))| +

|F (z/(1 + δ)) − P {XT (1 + δ) 6 z}| 6 ε/4 + ε/4, by the definition of δ and State-

ment (80). And similarly for P {XT (1 − δ) 6 z}. So
∣

∣F (z) − P (BK
T )

∣

∣ < ε/2. Finally,

then, T > T ∗ implies that

|F (x) − P (BT )| 6
∣

∣F (z) − P (BK
T )

∣

∣ +
∣

∣P (BT ) − P (BK
T )

∣

∣

< ε/2 + ε/2.

The argument for z < 0 is analogous. The proof follows because {XT} and {YT} are

independent.

Lemma 9. Let {cT} be a sequence of strictly positive real numbers such that limT→∞ cT =

∞, and consider f : R → R. Let {XT} be a stochastic process and {yT} a sequence of

strictly positive real numbers. If

1. XT
d→ X, as T → ∞, for some X with continuous distribution F ,

2. limT→∞ yT = ∞,

3. for each K > 0, limy→∞ f(x + y) = 0 uniformly in x ∈ [−K,K].

Then

cT

∫ XT /cT

0

f (x + yT ) dx
p→ 0, as T → ∞.

Proof of Lemma 9. Let η > 0 and denote by BT the event
{∣

∣

∣

∣

∣

cT

∫ XT /cT

0

f (x + yT ) dx

∣

∣

∣

∣

∣

6 η

}

.

We shall prove that P (BT ) → 1.

Let ε > 0. Let K > 0 be large enough that F (−K) < ε/2 and 1 − F (K) < ε/2. By

the uniform convergence of f on [−K,K], there is T ∗ such that T > T ∗ implies that, for

all x̃ ∈ [−K,K], |f(x̃ + yT )| < η/K. Then, for all T > T ∗ and x̃ ∈ [−K,K],
∣

∣

∣

∣

∣

cT

∫ x̃/cT

0

f (x + yT ) dx

∣

∣

∣

∣

∣

6 |x̃| η/K 6 η,
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as |x̃| 6 K. So T > T ∗ implies that P (BT ) > P {XT 6 K} > 1 − ε, by the definition of

K.

Lemma 10. Let A1, ..., AT be a random sample from FA(x) = 1 − exp(−x) with x > 0,

and let A
(T )
(1) 6 ... 6 A

(T )
(T ) be the ascending order statistics of (A1, ..., AT ). Consider

orders (m, k) ∈ T
2 such that m < k 6 T . If m → ∞, k → ∞ and T → ∞ in a way that

(T −m) → ∞, (T −m)/T → 0, (T −k) → ∞, (T −k)/T → 0 and (T −m)/(T −k) → ρ

where ρ > 1, then

√
T − m + 1

[

A
(T )
(m) − ln

T

T − m

]

d→ N1 and
√

T − m

[

A
(T )
(k) − A

(T )
(m) − ln ρ

√
ρ − 1

]

d→ N2

where N1 and N2 are two independent standard normal random variables.

Proof of Lemma 10. Using Renyi’s (1953) representation, we know that {A(T )
(T−k+1) −

A
(T )
(T−k)}T

k=1
d
= {Zk/k}T

k=1 where A
(T )
(0) ≡ 0 and where Z1, ..., ZT are independent and iden-

tically distributed standard exponential random variables. Then for any m, 1 6 m 6 T ,

and any k, m < k 6 T , we have

A
(T )
(m)

d
=

T
∑

j=T−m+1

Zj

j
and A

(T )
(k) − A

(T )
(m)

d
=

T−m
∑

l=T−k+1

Zl

l
, (82)

which are independent. When m → ∞, k → ∞ and T → ∞ in a manner that (T −m) →
∞, (T − m)/T → 0, (T − k) → ∞, (T − k)/T → 0 and (T − m)/(T − k) → ρ with

ρ > 1, we can apply the central limit theorem in Liapunov’s form to the sums of random

variables in Equation (82) (see e.g. Theorem 4 in Renyi (1953)) to get

A
(T )
(m) − M1

S1

d→ N1 and
A

(T )
(k) − A

(T )
(m) − M2

S2

d→ N2, (83)

with N1 and N2 two independent standard normal random variables where

M1 ≡
T

∑

j=T−m+1

1

j
=

T
∑

l=1

1

l
−

T−m
∑

n=1

1

n

= ln T + γ + O(T−1) − ln(T − m) − γ + O((T − m)−1)

= ln
T

T − m
+ O((T − m)−1), (84)
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and

S2
1 ≡

T
∑

j=T−m+1

1

j2

=
1

T − m + 1
− 1

T
+

θ

(T − m)(T − m + 1)

=
1

T − m + 1
+ o((T − m)−1), (85)

where γ is the Euler-Mascheroni constant and 0 < θ < 1; similarly

M2 ≡
T−m
∑

j=T−k+1

1

j
=

T−m
∑

l=1

1

l
−

T−k
∑

n=1

1

n

= ln
T − m

T − k
+ O((T − m)−1)

= ln ρ + O((T − m)−1), (86)

and

S2
2 ≡

T−m
∑

j=T−k+1

1

j2

=
1

T − k + 1
− 1

T − m
+

φ

(T − k)(T − k + 1)

=
ρ − 1

T − m
+ o((T − m)−1), (87)

where 0 < φ < 1 and ρ > 1. Combining Equations (83)-(87) then yields the result.
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