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Abstract

We introduce a path-based measure of convexity to be used in assessing the compact-
ness of legislative districts. Our measure is the probability that a district will contain
the shortest path between a randomly selected pair of its’ points. The measure is defined
relative to exogenous political boundaries and population distributions.

JEL classification numbers: D72, K00, K19

Key words: Compactness, Contiguity, Convexity, Disconnection Sensitivity, Path-based
Measure, Elections, Gerrymandering



A Measure of Bizarreness∗

Christopher P. Chambers and Alan D. Miller

1 Introduction

Hundreds of years ago, legislators discovered that the ultimate composition of a legislature
is not independent of the means through which district boundaries are drawn. Hoping to
stave off unemployment, legislators learned to master the art of gerrymandering : carefully
drawing district boundaries to increase their electoral chances and political power. Like
certain forms of painting and ballet, this art became more and more noticeable by the
odd shapes it produced.1

Past attempts on the part of political reformers to fight gerrymandering have led
to the introduction of vague legal restrictions requiring districts to be “compact and
contiguous.”2 The vagueness of these legal terms has led to the introduction of several
methods to measure district “compactness.”3 However, none of these methods is widely
accepted, in part because of problems identified by Young [19] and Altman [1]. We argue
that these laws were introduced with the aim of eliminating bizarrely shaped districts.
To this end we introduce a measure of “bizarreness.”

The primary problem with gerrymandering is that elections become less competitive
when legislators draw district lines to strengthen their reelection chances. The “bizarre”
shapes which result are merely a side-effect of this process.4 Reformers have focused on

∗Division of the Humanities and Social Sciences, Mail Code 228-77, California Institute of Technology,
Pasadena, CA 91125. Emails: chambers@hss.caltech.edu; alan@hss.caltech.edu. We would like to thank
Paul Healy, Ehud Lehrer, R. Preston McAfee, Matthew Spitzer, Peyton Young, and seminar participants
at Caltech for their comments.

1In 1812 a district was said to resemble a salamander; one hundred eighty years later, another was
likened to a “Rorschach ink blot test.” Shaw v. Reno, 509 U.S. at 633.

2Thirty-five states require congressional or legislative districting plans to be “compact”, forty-five
require “contiguity”, and only one requires neither. See [8]. There may also be federal constitutional
implications. See Shaw v. Reno, 509 U.S. 630 (1993); Bush v. Vera, 517 U.S. 959 (1996).

3“Contiguity” is generally understood to require that it be possible to move between any two places
within the district without leaving the district. See for example Black’s Law Dictionary which defines a
“contiguous” as touching along a surface or a point. [4]

4However, the U.S. Supreme Court has held that “bizarre shape and noncompactness” of districts is
not only evidence of unconstitutional manipulation of district boundaries but also “part of the consti-
tutional problem.” See Shaw v. Reno, 509 U.S. 630 (1993); Bush v. Vera, 517 U.S. 952, 959 (1996).



compactness because, while there is no consensus as to how district boundaries should
be drawn, bizarre shapes are clearly identifiable as a symptom of gerrymandering.

Part of the difficulty of defining a measure of compactness is that there are many
conflicting understandings of the concept. According to one view the compactness stan-
dard exists to eliminate elongated districts. In this sense a square is more compact than
a rectangle, and a circle may be more compact than a square. According to another
view compactness exists to eliminate bizzarely shaped districts. According to this view a
rectangle-shaped district would be better than a district shaped like a Rorschach blot.5

We follow the latter approach. While it may be preferable to avoid elongated districts,
the classic sign of a heavily-gerrymandered district is bizzare shape.6 We introduce a
measure of convexity with which to assess the bizzareness of the district.7 To the extent
that elongation is a concern, it should be studied with a separate measure. These are
two separate issues, and there is no obvious way to weigh tradeoffs between convexity
and elongation.

The basic principle of convexity requires a district to contain the shortest path between
any two of its’ points. Circles, squares, and triangles are examples of convex shapes,
while hooks, stars, and hourglasses are not. (See Figure 1.) The most striking feature of
bizzarely shaped districts is that they are extremely non-convex. (See Figure 2.)

(a) Convex Shapes

(b) Non-Convex Shapes

Figure 1: Convexity

5The majority opinion in Shaw v. Reno noted that one district had been compared to a “Rorschach
ink blot test” by a lower court and a “bug splattered on a windshield” in a major newspaper. 509 U.S.
at 633.

6Note that the term gerrymander comes from the bizzare shape of a Massachussets legislative district
which, in the view of a political cartoonist, resembled a salamander. Had the controversial district
merely resembled a rectangle, the process of district manipulation would possibly be referred to as a
gerrytangle.

7Writing for the majority in Bush v. Vera, Justice O’Connor referred to “bizarre shape and noncom-
pactness” in a manner which suggests that the two are synonymous, or at least very closely related. If
so then a compact district is one without a bizarre shape, and a measure of compactness is a measure
of bizzareness.
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(a) 4th District, Illinois

(b) 13th District, Georgia

Figure 2: Congressional Districts, 109th Congress

The path-based measure we introduce is the probability that a district will contain the
shortest path between a randomly selected pair of its’ points.8 This measure will always
return a number between zero and one, with one being perfectly convex. To understand
how our measure works, consider a district containing two equally sized towns connected
by a very narrow path, such as a road. (See Figure 3(a).) Our method would assign this
district a measure of approximately one-half. A district containing n towns connected
by narrow paths would be assigned a measure of approximately 1/n.9 (See Figure 3(b).)

Ideally, a measure of compactness should consider the distribution of the population
in the district. For example, consider the two arch-shaped districts depicted in Figure 4.
The districts are of identical shape, thus the probability that each district will contain the
shortest path between a randomly selected pair of its’ points is the same. However, the

8A version of this measure was independently discovered by Ehud Lehrer.
9Alternatively one might use the reciprocal, where the measure represents the equivalent number of

disparate communities strung together to form the district. The reciprocal will always be a number
greater or equal to one, where one is perfectly convex. A district containing n towns connected by
narrow paths would be assigned a measure of approximately n.
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(a) Two Towns (b) Five Towns

Figure 3: Towns connected with narrow paths.

A B

less more

population density

Figure 4: Same shapes, different populations

populations of these districts are distributed rather differently. The population of district
A is concentrated near the bottom of the arch, while that of district B is concentrated
near the top. The former district might represent two communities connected by a large
forest, while the second district might represent one community with two forests attached.

Population can be incorporated by using the probability that a district will contain
the shortest path between a randomly selected pair of its’ residents. In practice our
information will be more limited — we will not know the exact location of every resident,
but only the populations of individual census blocks. We can solve this problem by
weighting points by population density. The population-weighted measure of district A
is approximately one-half, while that of district B is nearly one.

One potential problem is that some districts may be oddly shaped simply because the
states in which they are contained are non-convex . Consider, for example, Maryland’s
Sixth Congressional District (shown in Figure 5 in gray). Viewed in isolation, this district
is very non-convex — the western portion of the district is almost entirely disconnected
from the eastern part. However, the odd shape of the district is a result of the state’s
boundaries, which are fixed. We solve this problem by measuring the probability that a
district will contain the shortest path in the state between a randomly selected pair of
its’ points. The adjusted measure of Maryland’s Sixth Congressional District would be
close to one.

Figure 5: 6th District, Maryland, 109th Congress

Our measure considers whether the shortest path in a district exceeds the shortest
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path in the state. Alternatively, one might wish to consider the extent to which the
former exceeds the latter. We introduce a parametric family of measures which vary
according to the degree that they “penalize” deviations from convexity. At one extreme
is the measure we have described; at the other is the degenerate measure, which gives all
districts a measure of one regardless of their shape.

1.1 Related Literature

1.1.1 Compactness Measures

A variety of compactness measures have been introduced by lawyers, social scientists,
and geographers. Here we highlight some of basic types of measures and discuss some of
their weaknesses. A more complete guide may be found in surveys by Young [19], Niemi
et. al. [9], and Altman [1].

Most measures of compactness fall into two broad categories: (1) dispersion measures
and (2) perimeter-based measures. Dispersion measures gauge the extent to which the
district is scattered over a large area. The simplest dispersion measure is the length-to-
width test, which compares the ratio of a district’s length to it’s width. Ratios closer
to one are considered more compact. This test has had some support in the literature,
most notably Harris [5].10

Another type of dispersion measure compares the area of the district to that of an ideal
figure. This measure was introduced into the redistricting literature by Reock [11], who
proposed using the ratio of the area of the district to that of the smallest circumscribing
circle. A third type of dispersion measure involves the relationship between the district
and it’s center of gravity. Measures in this class were introduced by Boyce and Clark [2]
and Kaiser [7]. The area-comparision and center of gravity measures have been adjusted
to take account of district population by Hofeller and Grossman [6], and Weaver and
Hess [18], respectively.

Dispersion measures have been widely criticized, in part because they consider dis-
tricts reasonably compact as long as they are concentrated in a well-shaped area (Young
[19]). We point out a different (although related) problem. Consider two disjoint commu-
nities strung together with a narrow path. Disconnection-sensitivity requires the measure
to consider the combined region less compact than at least one of the original communi-
ties. None of the dispersion measures are disconnection-sensitive. An example is shown
in Figure 6.11

10The length-to-width test seems to have originated in early court decisions construing compactness
statutes. See In re Timmerman, 100 N.Y.S. 57 (N.Y. Sup. 1906).

11The length-width measure is the ratio of width to length of the circumscribing rectangle with mini-
mum perimeter. See Niemi et. al. [9]. All measures are transformed so that they range between zero

and one, with one being most compact. The Boyce-Clark measure is
√

1
1+bc , where bc is the original

Boyce-Clark measure [2]. The Schwartzberg measure used is the variant proposed by Polsby and Popper
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Figure 6: District II is formed by connecting district I to a copy of itself. Disconnection-
sensitivity implies that I is more compact.

I II

Compactness Measures

Dispersion Measures District: I II
Length-Width 0.63 1.00
Area to Circumscribing Cir-
cle

0.32 0.44

Area to Convex Hull 0.57 0.70
Boyce-Clark 0.15 0.29

Other Measures
Path-Based Measure 0.84 0.42
Schwartzberg 0.29 0.14
Taylor 0.40 0.20

Perimeter measures use the length of the district boundaries to assess compactness.
The most common perimeter measure, associated with Schwartzberg [14], involves com-
paring the perimeter of a district to its area.12 An objection to the Schwartzberg measure
is that it is overly sensitive to small changes in the boundary of a district. Figure 7 shows
a sequence of shapes with their associated Schwartzberg measures. While the shapes in
the sequence become arbitrarily close to a rectangle, the perimeter is increasing, and thus
the Schwartzberg measure of the shapes decreases rapidly. By contrast, the path-based
measure considers these shapes more compact the closer they become to rectangles.13

Taylor [15] introduced a measure of indentation which compared the number of reflex-
ive (inward-bending) to non-reflexive (outward-bending) angles in the boundary of the
district. Taylor’s measure is similar to ours in that it is a measure of convexity. Figure
8 shows six districts and their Taylor measures, arranged from best to worst.

[10] (originally introduced in a different context by Cox [3], or ( 1
sc )2, where sc is the measure used by

Schwartzberg [14].
12This idea was first introduced by Cox [3] in the context of measuring roundness of sand grains. The

idea first seems to have been mentioned in the context of district plans by Weaver and Hess [18] who
used it to justify their view that a circle is the most compact shape. Polsby and Popper [10] have also
supported the use of this measure.

13This example is theoretical; the extent to which this problem occurs in practice is a matter of debate.
Young [19] suggests that jagged edges caused by the arrangement of census blocks may lead to the sort
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(a) 0.143 (b) 0.059 (c) 0.019 (d) 0.005

Figure 7: Schwartzberg measure

(a) 0.75 (b) 0.71 (c) 0.67

(d) 0.60 (e) 0.33 (f) 0.00

Figure 8: Taylor’s measure

Lastly, Schneider [12] introduced a measure of convexity using Minkowski addition.
For more on the relationship between convex bodies and Minkowski addition, see Schnei-
der [13].

1.1.2 Other literature

Vickrey [17] showed that restrictions on the shape of legislative districts are not neces-
sarily sufficient to prevent gerrymandering. In Vickrey’s example there is a rectangular
state in which support for the two parties (white and gray) are distributed as shown in
Figure 9. With one district plan, the four legislative seats are divided equally; with the
other district plan, the gray party takes all four seats. In both plans, the districts have
the same size and shape.

(a) 2 gray, 2 white (b) All gray, no white

Figure 9: Vickrey’s example

Compactness measures have been touted both as a tool for courts use in determining
whether districting plans are legal and as a metric for researchers to use in studying the

of problem discussed here.
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extent to which districts have been gerrymandered. Other methods exist to study the
effect of gerrymandering – the most prominent of these is the seats-votes curve, which is
used to estimate the extent to which the district plan favors a particular party as well as
the responsiveness of the electoral system to changes in popular opinion. For more see
Tufte [16].

2 The model and proposed family of measures

2.1 The Model and Notation

Let K be the collection of compact sets in Rn whose interiors are path-connected (with
the usual Euclidean topology) and which are the closure of their interiors. Elements
of K are called parcels. For any set Z ∈ Rn let KZ ≡ {K ∈ K : K ⊆ Z} denote the
restriction of K to Z.

Consider a path-connected set Z ∈ Rn and let x, y ∈ Z. Let PZ (x, y) be the set
of continuous paths f : [0, 1] → Z for which f (0) = x, f (1) = y, and f ([0, 1]) ⊂ Z.
For any path f in PZ (x, y), we define the length l (f) in the usual way. We define the
distance from x to y within Z as:

d (x, y; Z) ≡ inf
f∈PZ(x,y)

l (f) .

We define d (x, y; Rn) ≡ d (x, y). This is the Euclidean metric.

Let F be the set of density functions f : Rn → R+ such that
∫

K
f(x)dx is finite for

all parcels K ∈ K. Let fu ∈ F refer to the uniform density. For any density function
f ∈ F , let F be the associated probability measure so that F (K) ≡

∫
K

f(x)dx represents
the population of parcel K.14

We measure compactness of districts relative to the borders of the state in which they
are located. Given a particular state Z,15 we allow the measure to consider two factors:
(1) the boundaries of the legislative district, and (2) the population density.16 Thus, a
measure of compactness is a function sZ : KZ ×F → R+.

2.2 The basic family of compactness measures

As a measure of compactness we propose to use the expected relative difficulty of traveling
between two points within the district. Consider a legislative district K contained within

14Similarly, the uniform probability measure Fu(K) represents the area of parcel K.
15The state Z is typically chosen from set K but is allowed to be chosen arbitrary; this allows the case

where Z = Rn and the borders of the state do not matter.
16The latter factor can be ignored by assuming that the population has density fu.
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a given state Z. The value d(x, y; K) is the shortest distance between x and y which
can be traveled while remaining in the parcel K. To this end, the shape of the parcel K
makes it relatively more difficult to get from points x to y the lower the value of

d (x, y; Z)

d (x, y; K)
. (1)

Note that the maximal value that expression (1) may take is one, and its’ small-
est (limiting) value is zero. Alternatively, any function g(d(x, y; Z), d(x, y; K)) which is
scale-invariant, monotone decreasing in d(x, y; K), and monotone increasing in d(x, y; Z)
is interesting; expression (1) can be considered a canonical example. The numerator
d(x, y; Z) is a normalization which ensures that the measure is affected by neither the
scale of the district nor the jagged borders of the state. We obtain a parameterized family

of measures of compactness by considering any p ≥ 0; so that
[

d(x,y;Z)
d(x,y;K)

]p
is our function

under consideration, defining[
d (x, y; Z)

d (x, y; K)

]∞
=

{
1, if d(x,y;Z)

d(x,y;K)
= 1

0, otherwise
.

Note that for p = 0, the measure is degenerate. This expression is a measure of the
relative difficulty of travelling from points x to y. Our measure is the expected relative
difficulty over all pairs of points, or:

sp
Z (K, f) ≡

∫
K

∫
K

[
d (x, y; Z)

d (x, y; K)

]p
f(y) f(x)

(F (K))2 dy dx. (2)

The special case of p = +∞ corresponds to the measure described in the introduction,
which considers whether the district contains the shortest path between pairs of its points.

3 Conclusion

We have introduced a new measure of district compactness: the probability that the
district contains the shortest path connecting a randomly selected pair of its points.
The measure can be weighted for population and can take account of the exogenously
determined boundaries of the state in which the district is located. It is an extreme
point in a parametric family of measures which vary according to the degree that they
“penalize” deviations from convexity.
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3.1 Discrete Version

Our measure may be approximated by treating each census block as a discrete point. This
may be useful if researchers lack sufficient computing power to integrate the expression
described in (2).

Let Z ∈ Rn be a state as described in subsection 2.1 and let K ∈ KZ be a district.
Let B ≡ Rn × Z+ be the set of possible census blocks, where each block bi = (xi, pi)
is described by a point xi and a non-negative integer pi representing its center and
population, respectively. Let Z∗ ∈ Bm describe the census blocks in state Z and let
K∗ ⊂ Z∗ describe the census blocks in district K. The approximate measure is given by:

sp
Z∗ (K∗) ≡

 ∑
bi,bj∈K∗

i 6=j

[
d (xi, xj; Z)

d (xi, xj; K)

]p

pi pj


 ∑

bi,bj∈K∗
i 6=j

pi pj


−1

.
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