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Abstract

Several recent studies in experimental economics have tried to measure beliefs of
subjects engaged in strategic games with other subjects. Using data from one such
study (Nyarko-Schotter, 2002) we conduct an experiment where our experienced
subjects observe early rounds of strategy choices from that study and are given
monetary incentives to report forecasts of choices in later rounds. We elicit beliefs using
three different scoring rules: linear, logarithmic, and quadratic. There are differences
between the elicited beliefs under quadratic and logarithmic scoring rules in spite of
both being proper scoring rules. The (improper) linear scoring rule frequently elicits
boundary forecasts as theory predicts, and is poorly calibrated. We compare the
forecasts of our trained observers to forecasts of the actual players in the
Nyarko-Schotter experiment and identify several differences. There was a significant
positive correlation between observer forecasts and the choice behavior in the game
under both proper scoring rules, but no significant correlation between the players’ own
forecasts and the actual play. This raises doubts about whether beliefs can be reliably
elicited from players who simultaneously have a stake in the target of their forecast, in
this case the opponent’s choice. The distribution of player forecasts also tended to be
more extreme than the observer forecasts using either of the proper scoring rules. We
also find evidence of belief convergence when beliefs are elicited iteratively from a group.

Keywords: Scoring rules; Experiment; Game theory; Forecasting; Beliefs



1 Introduction

Probabilistic beliefs play a central role in mathematical theories of strategic decision

making. In games of strategy, optimal decisions depend on beliefs about other players’

choices, which in turn depend on their beliefs about one’s own decision, and so on. Many

ideas lying at the very foundation of these theories and related concepts in economics,

such as rational expectations and Nash equilibrium are built around strong assumptions

about beliefs. Most attempts to test these theories, often in laboratory experiments,

either measure beliefs indirectly by estimation, or impose maintained hypotheses about

beliefs (such as rational expectations), resulting in tests of joint hypotheses about beliefs

and rational choice. The ability to evaluate or test these theories more sharply would be

greatly enhanced if it were possible to measure beliefs directly. Indeed, there has a

number of recent attempts of direct measurement of probabilistic beliefs by

experimental economists, in the context of strategic games. Examples include Dominitz

and Hung (2004), in the context of information cascades, Huck and Weizsacker (2002) in

the context of lottery choice experiments, McKelvey and Page (1990) for information

aggregation, Duwfenberg and Gneezy (2000) in trust games, Offerman et al. (1996) and

Croson (2000) in voluntary contribution games. The results of those papers raise

questions about the measurement methodology itself, and its applicability to the

elicitation of beliefs in a strategic environment. Indeed, a striking finding from several of

these experiments is the surprising prevalence of extreme forecasts (degenerate or nearly

degenerate forecasts), which is hard to reconcile with standard theory.

This paper explores four methodological questions and two substantive questions

about the use of scoring rules for the elicitation of probabilistic beliefs about behavior in

strategic games. We undertake this exploration in the context of a simple 2x2

asymmetric matching pennies game similar to the one originally studied by Ochs (1995)

and more recently by McKelvey, Palfrey, and Weber (2000), Goeree, Holt, and Palfrey
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(2003), and Nyarko and Schotter (NS, 2002).

The first question is: can beliefs be reliably elicited from the players of a game,

during the play of the game? Unreliable reported beliefs could arise for a variety of

reasons, including psychological factors such as rationalization, or via distortion of

incentives because they are also being paid according their play in the game, which

violates the "no-stakes" condition of Kadane and Winkler (1988). We address this

question by comparing the elicited beliefs of (experienced) observers to the elicited

beliefs of the players themselves. Our subjects observe real sequences of choice behavior

from the NS data, and are asked to make probabilistic one-move-ahead forecasts of the

play of the game, as the sequence is played back to them in real time, using scoring rules

to incentivize the forecasts. Because the NS subjects also made incentivized

one-move-ahead forecasts, this allows for a direct comparison.

The other three methodological questions address the issue of whether the choice of

the scoring rule makes a difference: Are forecasts elicited using proper scoring rules

systematically different from those elicited using improper scoring rules? Are forecasts

elicited via two different proper scoring rules the same or different? Are forecasts better

calibrated for some scoring rules than others? With these latter two questions in mind,

we conduct an experiment with three different treatments, each corresponding to a

different scoring rule. The three scoring rules used are logarithmic (proper), quadratic

(proper), and linear (improper).

The substantive questions both concern information aggregation and belief

convergence of subjective beliefs. First, are individuals in a group able update their

beliefs in response to the forecasts of other members of the group? (belief convergence)

Second, if such convergence occurs, are individual forecasts improved by group

interaction? (information aggregation) To address these questions, our experiment

includes a second feature that allows for information aggregation. Our observers were
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placed in groups of four, and there were two sequential rounds for each forecast. The

entire profile of individual forecasts of group members was revealed between the two

rounds, so each individual had an opportunity to update his or her forecast in response

to the forecasts of the other group members. This allows us to test for belief convergence

(comparing the variance of first round to second round forecasts) and information

aggregation (comparing the accuracy of first round and second round forecasts).

We have five main findings. First, there is a difference between the elicited beliefs

under quadratic and logarithmic scoring rules in spite of both being proper scoring rules.

Forecasts elicited from our observers using the logarithmic scoring rule are less extreme

(closer to (.5,.5))than forecasts under the quadratic scoring rule according to several

different measures. Second, the linear scoring rule produces forecasts closer to 0 and 1

than the proper rules, and these forecasts are poorly calibrated. Third, the forecasts by

our observers with both proper scoring rules were more accurate than the forecasts of

the NS players, in the sense that the average elicited forecast was closer to the true

choice frequencies in the data. Furthermore, there was a significant positive correlation

between observer forecasts and the choice behavior in the game under proper scoring

rules, while there was no significant correlation between the NS players’ forecasts and

the actual play. This reinforces doubts about whether beliefs can be reliably elicited

from players who simultaneously have a stake in the target of their forecast, in this case

his opponent’s choice. Fourth, the distribution of forecasts by NS players were more

extreme than the observer forecasts using either of the proper scoring rules. Fifth, we

find evidence for belief convergence among our observers.
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1.1 Related Literature

1.1.1 Scoring rules

Scoring rules, which yield payoffs as a function of vector of probabilistic forecasts and a

realized event, are used to elicit subjective probabilities in laboratory and real-life

settings. Different scoring rules have different incentive compatibility properties.

Because elicitation methods are used to uncover "true" probabilistic beliefs, incentive

compatibility is an important criterion for the "goodness" of any scoring rule. A scoring

rule is classified as proper if it is incentive compatible. In the scoring rule literature, a

scoring rule is considered incentive compatible if a forecaster cannot attain a higher

expected score by reporting a probability different than her true probability.

Brier (1950) and Good (1952) were the first to identify two such proper scoring

rules, quadratic and logarithmic, respectively. Since then, both the quadratic and

logarithmic scoring rules as well as others have been shown to be strictly proper. Savage

(1971) specifies the general rule for generating the class of strictly proper scoring rules

and there have been numerous theoretical studies of desirable and undesirable properties

of proper and improper scoring rules.

1.1.2 Previous experiments using scoring rules to elicit beliefs

The quadratic scoring rule is the most common one applied in both laboratory and field

experimental settings for the forecasting of subjective events such as weather forecasting

(Staël von Holstein 1971), stock market prices (Staël von Holstein 1972), outcomes of

sporting competitions (Winkler 1971), and game theory (see below). The logarithmic

scoring rule has been applied to a much lesser extent in experiments on education

testing (Hambleton et. al. 1970; Glein and Wallace 1974) and information aggregation

(Ledyard et. al. 2005).

A few articles in the psychology literature have studied belief elicitation with
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different scoring rules, but none has conducted a comprehensive comparison of

elicitations from the logarithmic, quadratic, and linear scoring rules, none have looked at

the use of scoring rules for belief elicitation in the context of strategic choices in games,

and none have compared player and observer forecasts.

Studies in experimental economics that have tried to use of scoring rules to elicit

subjective beliefs about action choices in a strategic game have produced mixed results.

In the context of two-person matrix games, extreme reported beliefs are observed with

surprising frequency (Dominitz and Hung 2004, Nyarko and Schotter 2002). Because the

"true" frequencies of target states is generally between .35 and .65 in these studies, this

suggests bias in the forecasts. Furthermore, beliefs are erratic, in the sense that they

change much faster from period to period than a Bayesian model would predict,

indicating that forecasts are not only inaccurate, but highly imprecise (Nyarko and

Schotter 2002, fig. 2, p. 980). If the players were adjusting beliefs according to Bayes

rule or even according to a simple counting procedure, truthful reporting of beliefs

should have a smoother trajectory than the observed forecasts. There is also evidence

from two person laboratory games that the process by which subjects decide on a

forecast is qualitatively different from the decision process they use to make a decision,

which can sometimes result in forecasts that are inconsistent with choice behavior

(Costa-Gomes and Weizsacker 2006).

In contrast, Dominitz and Hung (2004), in the context of an information cascade

experiment, report that players’ forecasts are dampened relative to Bayesian reports. In

particular, they find that subjects often fail to change their forecasts in response to hard

information, which suggests possible distortions in the elicitation procedure. The task

was different from the our task of one-step-ahead forecasts of choices in a repeated game,

since their subjects were repeatedly forecasting a static target (the state of the world),

rather than a stochastically moving target. Offerman et al. (1996) elicited subjective
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player forecasts about the level of contributions of other players in a voluntary

contributions game. Some of the forecasts were degenerate, bimodal, or implausible for

other reasons, and they confirm the finding reported by Palfrey and Rosenthal (1991)

that subject beliefs about others’ contributions exhibit an optimism bias.

There is very little evidence about the similarities and differences between forecasts

elicited from observers and forecasts elicited from players themselves, and what evidence

exists is mixed. Huck and Weizsacker (2002) elicit forecasts from subjects who observe

decision makers in a simple (objective) binary lottery choice task. They find some

inaccuracies, notably that the forecasts are closer to 50/50 than the actual choice

frequencies of the subjects, and that this doesn’t depend in a significant way on the

elicitation procedure. This is in stark contrast to the forecasting behavior measured

using an identical quadratic scoring rule in the NS experiment, where reported beliefs of

players are biased in the opposite direction. These two findings are also at odds with

findings reported in Offerman et al. (1996, p. 828), where observers submitted forecasts

that were more extreme than those submitted by the players themselves.

1.1.3 Convergence of beliefs

Our iterative elicitation method could induce a common knowledge inference process

whereby individual beliefs adjust after others’ beliefs are revealed. In the common

knowledge literature, Aumann (1976) first established that if two agents have the same

common prior, their posterior probability of an event must be the same if the posteriors

are common knowledge. The subsequent work of Geanakoplos and Polemarchakis

(1982), McKelvey and Page (1986), and Nielsen et al. (1990) are more closely related to

the possible process generated by our iterative elicitation method. Geanakoplos and

Polemarchakis show that with iterated exchange of information between the agents, the

inference process would terminate at a point where the posterior probabilities are equal.
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Related to our iterative elicitation method are experiments in which subjects receive

feedback about other subjects’ forecasts (McKelvey and Page 1990; Offerman and

Sonnemans 1998; Winkler 1968). With the exception of Winkler’s experiment in which

he elicits forecasts about subjects with intrinsic uncertainty such as the weather or

sports through an unincentivized questionnaire, the rest induced differences in private

information in the laboratory and focused upon the efficiency of private information

pooling when there is objective uncertainty. These studies report some belief

convergence as measured by the reported forecasts of these objective events.

2 Theoretical Background

2.1 Simple Matrix Game

This is the simple matrix game that was used in the Nyarko-Schotter experiment and in

ours as well.

Green Red
Green 6, 2 3, 5
Red 3, 5 5, 3

Table 1. Matrix game payoffs.

This is a constant sum game with an unique Nash equilibrium in mixed strategies

that is supported by the principle of best response. In equilibrium both players choose

Green with 40% probability and Red with 60% probability.

2.2 Three Scoring Rules

Scoring rules, which compute a numerical score as a function of the stated probabilities

as well as the realized event, are often used in forecasting and experimental settings to

assess the accuracy of forecasts. In our experiment, this score also specifies the monetary

payoff. A scoring rule is proper if the forecaster maximizes her expected monetary
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payoff by revealing her true belief. We next describe the three scoring rules used in the

three belief elicitation treatments of our experiment. We then go on to show that the

quadratic and logarithmic scoring rules are proper whilst the linear scoring rule is not.

2.2.1 Preliminaries

Let i = 1 , 2 , ..., n denote the n possible events and let p = (p1, p2, ..., pn) be the

forecaster’s stated forecast, where pi is the stated probability of event i. Define the

scoring rule S = {S1, S2, ..., Sn} as a collection of scoring functions where Si(p) specifies

the score when event i is realized as a function of the forecast, p. Let π = (π1, π2, ..., πn)

be the subject’s true belief where πi is the probability of event i.

2.2.2 Characterization

1. Quadratic Scoring Rule:

Si(p) = α− β
nX

k=1

(Ik − pk)
2 (1)

where α, β > 0 and Ik is an indicator function that takes the value 1 if the realized

event is event k and 0 otherwise. The quadratic rule scores the inaccuracy of the

forecast as a constant minus the sum of the square deviations. In our belief

elicitation experiment, there two possible events the observer is forecasting: the

event that the player being observed chooses Green, which we denote as G, or

Red, R. We denote the two forecasts by pG and pR, respectively, where

pG + pR = 1. Following Nyarko-Schotter (2002), we pay our subjects in the

quadratic treatment an amount in dollars that is proportional to their score, using

parameters α = 1 and β = 0.5. The score is therefore:

SG = 1− p2R if G is chosen

SR = 1− p2G if R is chosen
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It is a straightforward exercise to prove that the quadratic rule is proper: i.e., a

forecaster with true beliefs π maximizes expected score (expected payoff) by

reporting p = π.

2. Logarithmic Scoring Rule:

Si(p) = α+ β(logpi) (2)

where α, β > 0

The logarithmic rule, which is also proper, equals a constant less a penalty

proportional to the natural log of the forecast of the realized event (a negative

number since 0 ≤ pi ≤ 1). The lower the forecast of the realized event, the greater

is the penalty. The score is −∞, however, when zero probability is placed on the

realized event. Because of this property, implementation in practice requires

bounding the forecasts away from zero. We place bounds on the maximum (0.9)

and minimum (0.1) probability a subject can place on any event. We set α = 1

and β = 0.45. The score if event i occurs in the logarithmic treatment is:

Si(p) = 1 + 0.45(logpi)

3. Linear Scoring Rule:

Si(p) = α+ βpi (3)

where β > 0

We use α = 0 and β = 1 in our experiment, so the linear score is simply the

probability forecast for the realized event. The linear scoring rule is not proper. A

forecaster with true beliefs π maximizes expected linear score by placing maximum

weight on the most likely event. If the forecaster believes the two events are

equally likely, then any forecast is optimal.
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3 Experimental design and procedures

We conducted six sessions with a total of 48 subjects. Subjects were registered students

at Princeton University, and were recruited by E-mail solicitation. Sessions were

conducted at the Princeton Laboratory for Experimental Social Science, and all

interaction was computerized. Each subject participated in exactly one session, with 8

subjects per session. The primary treatment variable was the scoring rule, either log,

quadratic, or linear, with one third of the subjects in each treatment.

Each session had two parts. Instructions were read aloud to the subjects.1 In the

first part, subjects were randomly assigned to be either the row player or the column

player in the 2x2 game in Table 1. Keeping the pairings fixed, they played the game

repeatedly for 5 rounds. After round 5, they are assigned to the opposite role so that if

they were a row player in the first five rounds, they are now a column player and vice

versa. They are also randomly repaired with a different player and play the game

repeatedly for 5 rounds with this new opponent. Their earnings for Part 1 was the sum

of their earnings over all 10 rounds of play. The sole purpose of part 1 of the session was

to give subjects experience with the game.

In part 2, subjects did not play the game, but instead made "observer" forecasts

about the sequence of choices of either the row or the column player in seven different

pairs from the Nyarko-Schotter (NS) experiment. In each session, four subjects (row

forecasters) were assigned the task of sequentially forecasting choices of NS row players

and the other four subjects (column forecasters) were assigned the task of forecasting

the choices of NS column players. These roles were fixed throughout part 2. The scoring

rule (quadratic, log, or linear) was fixed throughout the session, and was explained

carefully to the subjects.

We then played back the data sequentially to the subjects in the following way.

1A sample copy of the instructions is available http://www.hss.caltech.edu/~trp/elicit/sample_instructions.pdf.
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First, for one particular NS pair, all eight observers are told the actions chosen by the

two players of a particular NS pair in the first five rounds of that match. The list of

actions chosen by that NS pair in the first five matches is displayed on every subject’s

computer screen. Each row forecaster is then asked to report a forecast about the

likelihood the row player in that pair chose red or green in round six, and column

forecasters are asked to report a forecast about the likelihood the column player in that

pair chose red or green in round six. This is implemented by requiring each subject to

type in two integers, one for green and one for red, where the two numbers must add up

to 100.2 All the column predictors simultaneously and independently make forecasts in

this manner about the actions of the one column player in round 6 of that NS pair, and

all the row forecasters simultaneously and independently make forecasts in this manner

about the actions of the one row player of the same NS pair.

After reporting these forecasts, all row forecasters are told the forecasts of all the

other row forecasters, and all column forecasters are told the forecasts of all the other

column forecasters. We then elicit a second forecast from each subject by the same

method. This second forecast can be the same or different from the first forecast.

After the revised forecasts have been made, the actual choices by the row and

column players in round 6 of that NS pair are then reported back to the subjects, so

they now know the choices by both subjects in the first six rounds of the match. For

each subject, one of their two forecasts was randomly chosen for actual dollar payoff.

Subjects then proceed to make forecasts about round 7 of that NS pair, in the same

manner as they made forecasts about round 6. Roles (row or column forecaster) stay

fixed. They continue in this way to make iterative forecasts for the play in rounds 8, 9,

and 10 of that NS pair, receiving feedback after each forecast. This procedure was then

2Because the log scoring rule gives negative payoffs at the boundary (0 or 100), forecasts for that scoring
rule were constrained to be betweeen 10 and 90. For consistency, the same constraint was imposed with
the other scoring rules.

11



repeated (sequentially) during the session so that the eight subjects observed a total of 7

NS pairs. Thus, overall, subjects reported and revised forecasts sequentially for a total

of 35 plays of the game by 7 different pairs. They were paid the sum of their dollar

payoffs in all 35 rounds. Total earnings ranged from $17 to $35.

4 Results

We analyze the results in two subsections. First, we describe the main aggregate

features of the initial elicitation data, before subjects have had the chance to revise their

forecasts in light of the forecasts of others. We compare the distribution of forecasts

across treatments and across roles. We also compare our data with the distribution of

forecasts elicited from NS subjects in rounds 6-10 of that experiment and to the

aggregate frequency of choices observed in their data.

Second, we analyze the accuracy of the forecasts. We use two benchmarks:

uninformed forecasting (always forecasting 50/50) and rational expectations (forecasting

the empirical average frequency in every round). We refer to 50/50 forecasts as

uninformed because such a report is optimal for a forecaster whose prior is uniform on

[0,1].

Third, we investigate questions about the iterative elicitation process. Does it lead

to convergence of beliefs? Does the iterative process lead to more accurate forecasts?

4.1 Individual forecasts: Comparison of scoring rules and
comparison with NS

Table 2 compares the average forecasts and the actual choice frequencies, broken down

by scoring rule and by role (row or column).3 In this and subsequent tables, "column"

refers to column moves or forecasts about column moves. "Row" refers to row moves or
3The analysis in this section considers only the first elicited forecast of subjects. These beliefs are made

before they know the forecasts of the other members of their group. We analyze the revised forecasts in
the next section, where we address questions of convergence of beliefs and information aggregation.
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forecasts about row moves. The first three columns give the average forecast under our

three scoring rule treatments. The fourth column is the average forecast in rounds 6-10

of NS experiment 1 (i.e. the same rounds our subjects were forecasting), and the final

column gives the actual choice frequencies in those rounds.

Three results are illustrated by this table. First, the NS players and our own

subjects systematically underestimate the probability column will choose green and

overestimate the probability that row will choose green, but these differences are not

significant. Second, this bias is less in both observer treatments with a proper scoring

rule, and for both player roles, compared to the NS elicitation from the actual players.4

Third, for observers, the bias is less with the proper scoring rules than with the linear

scoring rule.

Quad Log Lin NS Quad Observed
Column 45.7∗ 47.7∗ 39.8 44.3 55.7

Row 48.8∗ 47.4∗ 51.7∗ 53.0 42.9
N 560 560 560 140 140

Table 2. Average forecasts compared to observed choices. Entries are % Green.

* = less biased than NS forecasts.

Another way to compare the forecasts of our observer subjects with the forecasts of

the actual players of the game is to look at raw correlations between the two. The first

row of Table 3 reports these raw correlations using the average first round forecasts of

each of our groups of four subjects, matched with the forecasts of the corresponding NS

subject. We find large positive correlations for our quadratic scoring rule treatment, less

4Because the observer forecasts were limited to the range of 10 and 90 and the NS forecasts were not,
we were concerned that theses and other results comparing observer forecasts with NS forecasts might
be an artifact of this truncation. As a check, we have replicated the analysis of NS forecasts in Table 2
by recoding forecasts that are more extreme than 10 and 90, as 10 and 90, respectively. The results are
the same. A similar replication was done for Tables 4 and 5 as well.
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so for the linear rule, and actually negative for the log rule. To test for significance of

these differences, we ran a Tobit regression of the mean of our elicited beliefs under

quadratic treatment on the corresponding NS elicitations. The coefficients and standard

errors are reported in the second row of Table 3. The coefficient is significant at the 5%

level only for the quadratic treatment. We cannot reject the hypothesis that our log and

linear elicitations are uncorrelated with the elicited beliefs of the NS players.

Quad Log Linear
Correlation 0.17 −0.0081 0.072

Tobit Coefficient 0.087∗(0.043) −0.0022(0.023) 0.037(0.043)

Table 3. Correlation between average Observer forecasts and matched NS forecasts.

Standard errors in parenthesis. ∗ = significant at p=.05.

The results from Tables 2 and 3 show that the three scoring rules we use with

observers clearly do lead to different measurements of beliefs.5 To explore this further,

we examine the differences in extremeness of elicited beliefs across our three measures

and look at how these dispersions compare with the NS elicitations. To measure

extremeness, we compute the absolute differences from 50 for each individual forecast.

According to the theoretical results, we know that quadratic and log are both proper

scoring rules, so we hypothesize no significant difference between the dispersion in

forecasts for log and quadratic. In contrast, the linear scoring rule is not proper; indeed,

optimizing risk neutral subjects will report beliefs equal to either 0 or 1. We hypothesize

the linear elicitation procedure will result in greater dispersion than the quad or log

methods.

In addition, if the distribution of beliefs are the same for observers and players of

the game, and if there are no distortions created by having a subject report forecasts

5As is standard, we maintain a "belief independence" hypothesis throughout. That is, the scoring rule
may affect forecasts, but do not directly affect beliefs.
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and choose actions at the same time (as in NS), then there should be no difference

between the player forecasts and the observer forecasts, at least under the quadratic

scoring rule. Thus, we hypothesize that there will be no differences in dispersion

between NS forecasts and the observer forecasts using quadratic rule.

The average extremeness across all forecasts in each treatment is reported in Table

4, with the complete CDF of the differences displayed in Figure 1.

and Settings/Palfrey/My
Documents/PAPERS/wang-elicit/paper/inddispersioncdf.jpg

Figure 1. Individual forecast dispersions under the three scoring rules and NS.

The differences are striking. First, the NS player forecasts and linear forecasts

exhibit more dispersion than the forecasts by observers with proper scoring rules. The

differences are not only significant, but large in magnitude, with the NS dispersions

more than double the log scoring rule dispersion and 35% greater than the dispersion of
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observer quadratic elicited beliefs.

Second, the linear scoring rule leads to the greatest dispersion among the observers,

with the comparison to log and quadratic significant as theory predicted.6 Third, the

linear forecasts are less dispersed than the NS forecasts. Fourth, observer forecasts using

quadratic and log scoring rules are significantly different from each other, with the

dispersion under the quadratic scoring rule 60% more than under the log scoring rule.

Quad Log Linear NS
Extremeness 16.42∗(0.64) 10.17∗(0.40) 19.38∗(0.71) 22.19(1.12)

Table 4. Forecast extremeness: average absolute difference from 50.

Standard error in parenthesis.∗ = significantly different from NS (p=.05)

Two other features of the distribution of extremeness are worth noting. The first is

stochastic dominance. The distribution of extremeness for the NS player forecasts

stochastically dominates the corresponding distributions for both proper scoring rules.

Comparing the two proper scoring rules, the distribution of the quadratic rule

stochastically dominates the logarithmic rule, except for an insignificant difference at 0.

And both proper scoring rules are stochastically dominated by the improper rule (again

with an insignificant difference at 0). The only comparison that does not show

stochastic dominance is between the observer forecasts with a linear rule and the NS

player forecasts. The second feature about the distributions of interest is the frequency

of boundary forecasts (i.e., forecasts of 10% or 90%). The NS and linear elicitation

procedures resulted in the most boundary forecasts (25.7% and 33.2%), with the proper

scoring rules having significantly fewer (19.6% for quadratic and 2.5% for logarithmic).

6This is consistent with Nelson and Bressler (1989) who found that a linear scoring rule generated
more extreme forecasts than a quadratic scoring rule.
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4.1.1 Accuracy of reported beliefs: Do the subjects know anything?

In the actual NS experiment, and also in our experiment using trained observers, the

subjects clearly think they know something. Over 92% of the time, they report

"informed" beliefs, i.e., forecasts different from 50/50. In contrast, observers report

uninformed beliefs relatively frequently: between 1/4 and 1/3 of the time, depending on

the scoring rule.

It is then natural to ask whether the apparently greater confidence of the players is

justified. The evidence suggests it is not. We document this in detail below, but the

bottom line is apparent from Table 2 in the previous section that shows NS forecasts of

row and column actions to be systematically biased and on the wrong side of 50/50.

Moreover, because the choice behavior aggregate frequencies hover around 50% green,

extreme forecasts seem to be harder to defend as "rational", compared with fully hedged

forecasts.

In contrast, we find evidence that the trained observers with proper scoring rules

seem to have some forecasting ability. First we look at the raw correlation between

forecasts and the choices they are forecasting. These are given in the first row of Table

5. The overall correlations between forecasts and actions is significantly positive for

both observer treatments with proper scoring rules. In contrast, we cannot reject the

hypothesis that overall NS forecasts and actions are completely uncorrelated.

Quad Log Linear NS
Correlation 0.135∗ 0.085∗ −0.085∗ 0.022

Calibration regression coefficient 0.30∗ (0.09) 0.31∗ (0.15) −0.17∗ (0.06) 0.034 (0.15)
Calibration regression constant 34.88+(4.94) 34.50+(7.64) 56.96(4.35) 47.64(8.40)

Table 5. Correlation between individual elicited forecast and actual choice in the experiment.

∗Coefficient significantly different from 0 (p=.05). Standard errors in parenthesis.

+=constant term significantly different from 50 (p = .05)
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Second, we ask how well calibrated the forecasters are (Seidenfeld 1985). By

Seidenfeld’s definition, "a set of probabilistic predictions are calibrated if p percent of all

predictions reported at probability p are true." A subject is perfectly calibrated in our

experiment if for all the instances when she forecasted Green being played with 30%

probability, Green is played 30% of the time, for all the time when she forecasted Green

being played with 60% probability, Green is played 60% of the time, and so on. Table 6

shows the frequency of Green green choice for each forecast (pooled into bins 0-10,

11-20, etc.), with the number of observations in parenthesis. It is clear from Table 6 that

the NS forecasts and the ones under the linear scoring rule are badly calibrated.

Forecast Bin Quadratic Logarithmic Linear NS
0-10 36.1(71) 30.0(10) 53.1(113) 50.0(16)
11-20 42.9(28) 35.7(14) 48(25) 41.7(12)
21-30 44.9(49) 46.0(50) 45.5(22) 45.5(22)
31-40 41.2(51) 47.2(125) 57.1(77) 55.6(18)
41-50 52.4(189) 47.9(192) 48.3(174) 46.2(13)
51-60 53.6(56) 56.3(103) 61.8(34) 47.1(17)
61-70 51.3(39) 48.9(47) 38.1(21) 50(14)
71-80 71.1(38) 86.7(15) 47.4(19) 71.4(7)
81-89 (0) (0) 50(2) 0(1)
90-100 51.3(39) 0(4) 37.0(73) 50(20)

Table 6. Calibration: Observed Percent Green Choice by Forecast.

In order to make statements about the statistical significance of calibration, we ran

Calibration regressions of the action taken (100 for Green, 0 for Red) on the (first

round) forecasts of Green being played. The coefficient on the action choice would be 1

and the intercept 0 if the subjects are perfectly calibrated. The coefficient would be 0

and the intercept 50 if the subjects are forecasts are perfectly uninformed. As reported

in the second and third rows of Table 5, we find that the coefficients are significantly

greater than 0 and the intercept is significantly less than 50 for the observer treatments

with proper scoring rules. In contrast, the coefficients are not significantly greater than
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0, and the constant terms are not significantly less than 50 for either the NS players or

the observers using an improper scoring rule.

4.2 Learning from others’ forecasts

Our experiment had two key design features that allow us to look at questions of

information aggregation. First, for each action decision to be forecast, we elicited

forecasts from four trained observers, rather than just one. Second, there were two

rounds of forecasts, and each forecaster was advised of the forecasts by the other

forecasters before reporting a second round forecast. In this section, we address two

specific questions about the effects of group feedback on forecasts and how the answers

depend on the scoring rule.

1. Do subjects update their forecasts after learning others’ forecasts? (belief

convergence)

2. Are updated forecasts more accurate? (information aggregation)

4.2.1 Belief Convergence

To address question 1, we first compute the frequency that subjects change their

forecast in the second round after being told the other forecasters’ reports, and the

average revision. The findings are reported in Table 7. The answer is yes, forecasters

revise their reports in response to the reports of other forecasters. The frequency of

revision ranges approximately 1/3 to 1/2, and the average absolute change is

significantly positive for all three scoring rules.

Quad Log Linear
Frequency 0.37 0.57 0.32

Average change 6.18∗(0.53) 5.72∗(0.33) 8.73∗(0.80)
Table 7. Frequency of and average revisions. ∗ = significantly different from 0 (p=.05)
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As further evidence, we look at the change in the variance of forecasts in the group,

defined as the variance of second stage forecast minus variance of first stage forecast. If

the forecasts are closer together in the second round (negative change in variance), we

take that to be evidence of belief convergence. The first three rows of Table 8 display

the percent of times the change was negative, zero, or positive, by scoring rule. We find

that the within-group variance declines from the first round to the second round about

half the time for all three scoring rule treatments, and declines more frequently than it

increases. The last row of Table 8 gives the average change in variance for each scoring

rule. For all scoring rules, the average change is significantly negative (at 5% level).

Quad Log Linear
% Less Variance 51 49 44
% No Change 24 4 29

%More Variance 24 48 28
Average change −64.30∗ −13.69∗ −35.57∗

Table 8. Directional change in Variance. ∗ = significantly different from 0 (p=.05)

4.2.2 Information Aggregation

To address question 2, we look at the difference between the mean squared deviation

(MSD) of initial forecasts and actions versus revised forecasts and action. The first three

rows of Table 9 display the percent of times the change (revised minus initial) was

positive, zero, or negatively, respectively, by scoring rule. We find that revised forecasts

are more accurate by this measure than initial forecasts, but the differences are not

large. The last row of Table 9 shows the average change in mean square deviation of

forecasts from action (revised minus initial). The changes are negative in all cases, but

the magnitudes are small.

Quad Log Linear
%More Accurate 19 31 18

% No Change 63 43 68
% Less Accurate 18 26 15
Average change −0.0040 −0.0012 −0.0012

Table 9. Directional change in MSD.
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5 Conclusions

The experiment reported here produced several findings on the elicitation of beliefs with

scoring rules. First, the forecasts by our observers under both proper scoring rules were

less biased than the forecasts of the NS players, in the sense that the average elicited

forecast was closer to the true choice frequencies (Table 2). Second, there was a

significant positive correlation between observer forecasts and the choice behavior in the

game for both proper scoring rules, while there was no significant correlation between

the players’ forecasts and the actual play being forecasted; and the correlation was

actually negative for the improper scoring rule (Table 5). Third, the distribution of

forecasts by NS players were more extreme than the observer forecasts using either of

the proper scoring rules. The average NS player forecast deviations (differences from

50/50) were not significantly different from forecasts elicited from observers under the

linear scoring rule. Fourth, the linear scoring rule elicits that are significantly more

extreme than the two proper rules. Fifth, there is a significant difference between the

elicited beliefs under quadratic and logarithmic scoring rules in spite of both being

proper scoring rules. Forecasts elicited by the logarithmic scoring rule have significantly

less dispersion. Sixth, forecasts elicited under the proper scoring rules were significantly

more accurate and better calibrated than those elicited from players and from observers

using an improper scoring rule. We did not observe differences in accuracy or

calibration for the two proper scoring rules. The relative accuracy of the two varied

across our different accuracy measures. Seventh, we find significant evidence for belief

convergence but only marginal evidence for information aggregation.

A number of conclusions can be drawn from these findings. We summarize our

findings in terms of the answers they give to the four methodological questions and two

substantive questions posed in the introduction of the paper.
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1. Can beliefs be reliably elicited from the players of a game, during the play of the

game? The first two findings described above raise serious doubts about the

reliability of beliefs elicited from players who simultaneously have a stake both in

the accuracy of their forecast and in the outcome itself, in this case an opponent’s

choice in a two person game. The third finding suggests what one might call an

overconfidence bias in player-forecasts, relative to the forecasts of experienced

observers. A deeper exploration into the sources of this bias is an interesting topic

for future research. A possible explanation is rationalization: players report

forecasts that reinforce their choice.

2. Are forecasts elicited using proper scoring rules systematically different from those

elicited by improper scoring rules? Yes, as implied by the sixth finding listed

above. Both proper scoring rules elicit forecasts from our observers that are

significantly more accurate and better calibrated than those elicited under the

linear scoring rule. One source of the bias caused by linear forecasts is that it

elicits more extreme forecasts, as predicted by standard theory.

3. Do different proper scoring rules elicit similar forecasts? Yes. The main difference

between forecasts elicited under logarithmic and quadratic scoring rules was that

the quadratic rule elicited more extreme beliefs than the logarithmic rule. The

distribution of extremeness of forecasts under the quadratic rule stochastically

dominates the distribution under the logarithmic rule. It is interesting that this

did not result in either one eliciting more accurate or better calibrated forecasts on

average than the other. Why we observe this difference is an open question. The

procedures used were identical, except for the scoring rule, and it seems

implausible that the difference is due to subject heterogeneity and sampling

variation. Risk aversion is not a plausible explanation either. While risk aversion
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can distort reported forecasts, if subjects have constant relative risk aversion, there

is virtually no difference in the theoretical distortion that would result under the

two rules. Loss avoidance may be a possible explanation for the difference in

boundary forecasts, but cannot explain the stochastic dominance finding. Other

possibilities, such as ambiguity aversion and other violations of expected utility

theory are worth pursuing in future research, but are beyond the scope of this

paper.

4. Are elicited forecasts more accurate and/or better calibrated under some scoring

rules than others? Yes. Forecasts from proper scoring rules are more accurate and

better calibrated than forecasts from improper scoring rules.

5. Do individuals in a group update their beliefs in response to the forecasts of other

members of the group?

We found significant forecast revisions in all three scoring rule treatments. The

within group variance of revised forecasts is significantly less than the variance of

initial forecasts. We infer from this that beliefs are converging.

6. Are individual forecasts improved by group interaction? Revised forecasts are more

accurate than initial forecasts, as measured by the MSD, but the magnitude of

improvement is small and statistically insignificant.

The choice of scoring rule to elicit probabilistic beliefs about subjective events can

make a difference. The distribution of our elicited beliefs under the three scoring rules

are significantly different from each other. Our findings add to evidence elsewhere that

the elicitation of beliefs directly from players, simultaneously playing the game for which

they are forecasting outcomes may be unreliable. In light of this, anomalies that have

been cited in the literature about play being inconsistent with beliefs (e.g., Costa-Gomes
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and Weizsacker 2006) are not surprising. The evidence is sufficiently convincing at this

point, that a reasonable position might be that the use of such procedures yield data

that is at best unreliable and at worst misleading. Our own view is more neutral, and

one hopes that more reliable methods can be discovered. In the meantime, forecasts

elicited directly from players should be interpreted cautiously with the expectation that

they may be distorted in some of the ways identified here.
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