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Abstract

This paper proposes a method for testing complementarities between explanatory and
dependent variables in a large class of economic models. The proposed test is based on
the monotone comparative statics (MCS) property of equilibria. Our main result is that
MCS produces testable implications on the (small and large) quantiles of the dependent
variable, despite the presence of multiple equilibria. The key features of our approach are:
(1) we work with a nonparametric structural model of a continuous dependent variable
in which the unobservable is allowed to be correlated with the explanatory variable in
a reasonably general way; (2) we do not require the structural function to be known or
estimable; (3) we remain fairly agnostic on how an equilibrium is selected. We illustrate

the usefulness of our result for policy evaluation within Berry, Levinsohn, and Pakes’s

(AER, 1999) model.
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1 Introduction

In many conventional economic models, equilibrium uniqueness comes at a cost of strong
and often untenable assumptions. Consider, for example, general equilibrium models: the
uniqueness conditions with some natural economic meaning imply the strong weak axiom,
which in turn cannot be expected to hold beyond single-agent economies (Arrow and
Hahn, 1971). Therefore it is not surprising to find equilibrium multiplicity present in a
variety of contexts, ranging from general equilibrium models in microeconomics, oligopoly
models and network externalities in industrial organization, to non-convex growth models

in macroeconomics or models of statistical discrimination in labor economics.

Performing comparative statics with multiple equilibria is a challenge. How changes
in explanatory variables affect dependent variables depends on the way a particular equi-
librium is selected. Unfortunately, the theoretical literature offers little guidance on
equilibrium selection.! As a consequence, policy analysis seems impossible as policy ef-
fects may well vary across different equilibria. More to the point, without equilibrium
selection, it is hard to identify the structure underlying economic models when multiple
equilibria are present. And with no knowledge of the structure, we can say little about
general comparative statics effects. We should emphasize that we are concerned with
testing for the existence of a comparative statics effect; the counterfactual prediction of
the effects of policies remains virtually impossible without substantial information about

equilibrium selection.

In this paper, we restrict our attention to economic models that exhibit comple-
mentarities between explanatory and dependent variables. In such models, despite the
possible presence of multiple equilibria, a monotone comparative statics (MCS) predic-
tion holds: there is a smallest and a largest equilibrium, and these change monotonically

with explanatory variables (Milgrom and Roberts, 1994; Villas-Boas, 1997). The paper’s

LConsider Kreps (1990), for example: “There are... lots of Nash equilibria to this game. Which one
is the ‘solution’? I have no idea and, more to the point, game theory isn’t any help. Some (important)
sorts of games have many equilibria, and the theory is of no help in sorting out whether any one is the

‘solution’ and, if one is, which one is.”



main contribution is to show how MCS arguments translate into observable restrictions

on the conditional quantiles of the dependent variable.

Our framework is as follows: similar to Jovanovic (1989), we start with an underlying
economic model relating dependent and explanatory variables. We disturb the model by
adding an unobservable disturbance term that captures individual heterogeneity, or other
unaccounted random features. The assumptions we impose on the resulting structure are
fairly weak: we allow for unknown structural function, unknown equilibrium selection,
and reasonably general correlation between the disturbance and the explanatory variable.
Our main result is that MCS produces testable implications on the (small and large)
quantiles of the dependent variable.? The result does not assume, nor require estimating,

an equilibrium selection procedure.?

The intuition behind is fairly simple. Consider a model in which there are complemen-
tarities between explanatory and dependent variables. When the generated equilibrium is
unique, then the model can be globally implicitly solved and the resulting reduced form
is such that the dependent variable increases in the explanatory variable. This prop-
erty translates into first order stochastic dominance among distributions: all conditional
quantiles of the dependent variable are increasing functions of the explanatory variable.
When the model generates multiple equilibria, the above implicit function arguments fail
to hold globally. It remains, however, the MCS property of the extremal equilibria. By
focusing on regions in which the monotonicity of equilibria holds, we still obtain that
tail (small and large) conditional quantiles of the endogenous variable increase in the
explanatory variable. Testing for complementarities is thus possible by examining the

behavior of extreme conditional tails of the dependent variable.

Our method applies to a large class of economic models with continuous dependent

variables. These are: models of individual decision making in which the equilibrium

2An earlier test for MCS can be found in Athey and Stern (1998) in the context of firms’ choice of

organizational form. This prior work, however, does not address equilibrium problems.
3Understandably, estimating the structural parameters requires additional parametric assumptions

on the equilibrium selection. Examples are discrete-choice models that estimate agents’ payoff functions
(Bjorn and Vuong, 1985; Bajari, Hong, and Ryan, 2004; Sweeting, 2005).



values are the solutions of an extremum problem, and one-dimensional equilibrium models
where equilibria are fixed points. Since the dependent variable is continuous, our findings
complement those developed by the growing literature on discrete games with multiple
equilibria (Bresnahan and Reiss, 1990, 1991; Berry, 1992; Tamer, 2003; Ciliberto and
Tamer, 2004; Aguirregabiria and Mira, 2007). Unlike in these papers, however, our
methods can only be applied to discuss comparative statics effects, and are silent about

other structural features of the model.

The next section discusses equilibrium multiplicity in Berry, Levinsohn, and Pakes’s
(1999) influential empirical model of price-setting with differentiated products. In Sec-
tion 3 we introduce a class of structural models, and present our results. We conclude in
Section 4 with a discussion and possible extensions of our approach. The supplementary
material contains three appendices: Appendix A gives proofs of additional results stated
in the text, while Appendix B provides details on the BLP application; finally, Appendix
C illustrates the interaction of equilibrium multiplicity and identification in structural

models that satisfy conditional moment restrictions.

2 Example

We now present a simplified version of Berry, Levinsohn, and Pakes’s (1995) model of
price competition with differentiated products. We use this model for two purposes:
first, to illustrate the challenges posed by equilibrium multiplicity, even in popular and
well-behaved economic models. Second, to argue that our methods provide useful tools
for policy analysis in these models. Concretely, we discuss the analysis of the Japanese
“Voluntary Export Restraint” (VER) policy for automobile exports published in Berry,
Levinsohn, and Pakes (1999) (BLP hereafter).

In our version of the BLP model there are two firms, each producing one good.
Firm 1 is foreign and Firm 2 is a home firm. Following BLP, we model the VERs as

increases in firms’ marginal costs. Firm ¢ sets the price p; of its product and obtains



profits (p; — ¢; — AVER;)D;(p;, p—i), where D;(p;,p—;) is a demand for Firm ¢’s good, ¢;
is 2’s marginal cost, VER, is a dummy variable for the VER, and A is the corresponding
tax per unit of i’s production. The firms’ profit functions determine their best-response
(reaction) functions. Given the marginal cost ¢; and the demand function D;(p;, p—;), let
3; denote Firm i’s best-response function; so p! = 3;(p_;, VER;) is Firm ¢’s optimal choice
of p; when its competitor sets a price p_;. Only the foreign firm is potentially subject to
the VER. Then, the equilibrium choice of the home firm’s price p is determined by the

fixed-point condition:

B2 (Bi(p, VER),0) —p = 0. (1)

Under standard continuity and compactness assumptions, there is at least one equi-
librium. It is however difficult to guarantee that this equilibrium is unique. Not only are
the known conditions for uniqueness very strong (Gabay and Moulin, 1980; Caplin and
Nalebuff, 1991) there is a sense in which games generally tend to have large numbers of
equilibria. In a model of randomly generated games, McLennan (2005) shows that the
mean number of equilibria grows exponentially with the number of strategies. Games of
strategic complements, which are especially relevant for our paper, tend to have particu-
larly large numbers of equilibria (Takahashi, 2005). As pointed out by Berry, Levinsohn,
and Pakes (1995, 1999), the BLP model in particular is not guaranteed to have a unique

equilibrium. We now illustrate their point through a concrete example.

2.1 BLP Model with Multiple Equilibria

We shall follow BLP in imposing additional structure on D; and ¢;. Demand arises from
a random utility specification: uy; = —ap; +& + <, in which uy; is the utility of product ¢
(1 =1,2) to individual h (h =1, ..., 1), p; is the price of product i and &; is its unobserved
characteristic; « is the taste parameter on price, assumed constant across individuals,
and ¢, is a stochastic term that represents the deviations from an average behavior of
agents. The distribution of ¢, is induced by the unobserved characteristics of individual

h and their interactions with products’ characteristics; we assume that E(g,) = 0.



Table 1: BLP Equilibrium Prices (p1, p2) in a Logit Model with Conditional Heteroskedas-
ticity
VER; =0 VER; =1 VER; =0 VER; =1

(2.0339,2.0339)  (2.0751,2.0704) (2.0339,2.0339)  (2.0751,2.0704)

(2.7336,2.7336)  (2.6205,2.6154) (2.2796,2.2796)  (2.2399, 2.2347)

(3.1238,3.1238)  (3.2087,3.2039) (6.3417,6.3417)  (6.3529,6.3490)
NoTE: Model parameters are: oy = 0.3859, NOTE: Model parameters are: a; = 0.2464,
Y0 = 0, Ag = 0.01, pg = 0.1667 and 7 = 10, ~v1 = 0.0776, Ay = 0.0099, p; = 0.1074, and
with g(z) = po + exp(—70/x). 71 = 12.9913 with g(z) = p1 + exp(—71/x).

Marginal costs are held constant across firms: Inc¢; = ~. To fully specify profits
requires additional assumptions on ¢, in the random utility model. We assume that
the individual deviations ¢, are heteroskedastic in a way that depends on prices: ¢, =
g(pip—;)en, where g is a positive real function that is increasing, and €, are standardized
iid random variables. Setting g to be constant yields the baseline specification. For
nonconstant cases, we restrict g to be twice continuously differentiable, and such that
0 < zg'(x)/g(x) < 1 for all x > 0, so that firms face strategic complementarities, and

that demand is decreasing (see Appendix B for details).*

As a first illustration, the left panel in Table 1 shows numerical results of the resulting
equilibria in the pricing equation (1). There is an equilibrium involving relatively small
prices, one involving larger prices, and one middle equilibrium. The table illustrates a
general phenomenon: there is always a smallest and a largest equilibrium, and, when
A > 0, these increase with the VER. The reason is shown on the left in Figure 1. The
plotted functions are the pricing game’s best-response functions, p — (s (51 (p, VER), 0),
whose fixed points correspond to the equilibria of the model. Imposing the VER causes
the game’s best response function to increase point wise, which increases the extremal

equilibria and decreases the middle equilibrium.?

4This specification is numerically convenient; by choosing different ¢’s we can experiment with the

equilibrium set.
5The middle equilibrium is well known to be locally unstable for many learning dynamics. By

considering a different g, we can obtain more equilibria, and only work with the stable ones: nothing
in our analysis depends on using an unstable equilibrium. These issues are discussed in some detail in
Echenique (2002).



Before VER
************ After VER

Figure 1: Monotone Comparative Statics of Equilibria.

2.2 Discussion

As already indicated in Berry, Levinsohn, and Pakes (1999), multiple equilibria in the
BLP model present problems for policy evaluation.® Here, we further analyze the mech-
anisms by which this equilibrium multiplicity interferes with standard approaches to

structural estimation and policy analysis.

2.2.1 Observable Policy Implications

What are the welfare effects of the actions firms take in response to the VER? The
answer depends on which of the possible equilibria we expect to appear. When the BLP
model has a unique equilibrium, then the effects of the VER are unambiguous: whenever
the implicit tax parameter A is greater than zero, prices will rise with the VER. As a
consequence, if A > 0, we expect the OLS regression coefficient of prices on the VER

dummy to be positive. BLP report such regression results in Table 4 in Berry, Levinsohn,

and Pakes (1999).

When the equilibrium is not unique, the implications of A > 0 are no longer obvious:
imposing the VER raises prices, and therefore lowers consumer surplus, in some of the

equilibria, but not others. Therefore both a positive and a negative OLS regression

6See Section V (part C) in Berry, Levinsohn, and Pakes (1999).



coefficient on the VER dummy are compatible with A > 0. The point should be clear
from the left panel in Table 1: if the firms are likely to play one (or both) of the extremal
equilibria, then the mean prices will rise with the VER; but if the firms are likely to play
the middle equilibrium, then the mean prices will fall with the VER.

For example, if the firms select each of the extremal equilibria with probability 0.2,
then the OLS regression coefficient of the price set by the home firm on the VER dummy
would be —0.04. Interestingly, BLP’s reported regression exhibits the (counterintuitive)
negative effect of the VER on prices. In light of our comments, equilibrium multiplicity

is a possible explanation for such regression results.

2.2.2 Structural Model Estimation

In addition to lack of implications for regressions, we argue that multiplicity poses prob-
lems for estimating the structural parameters in the BLP model, including the implicit
tax parameter \. In particular, if the equilibrium selections with and without the VER
have their supports in the intersection of the sets of equilibria, then different parameter

values may give rise to the same observables, thus causing identification to fail.”

The graph on the right in Figure 1 illustrates the point. The smallest equilibrium
without the VER (indicated with an arrow pointing up) is identical for the two best-
response functions; similarly, the smallest equilibria with the VER (indicated with an
arrow pointing down) are the same. All the other equilibria, however, are different.
If the firms were to always choose the smallest equilibrium, then the econometrician
would not be able to identify any of the structural parameters, including the implicit tax

parameter A in Equation (1).

The right panel in Table 1 gives a numerical example: the smallest equilibria with

"Already Berry and Reiss (2007) note (p. 1864): “empirical models with heterogeneous potential
entrants pose thorny conceptual and practical problems for empirical researchers. Chief among them are
the possibility that entry models can have multiple equilibria, or worse, no pure strategy equilibria. In
such cases, standard approaches to estimating parameters may break down, and indeed key parameters

may no longer be identified.”



and without the VER are the same as those in the left panel of the table, even though

the structural parameter values in the two models differ.®

2.2.3 Monotone Comparative Statics

We now argue that it is possible to evaluate the impact of the VER on prices without
having to estimate the structural parameters of the model. In Equation (1), VER and
prices are complements. Hence, the comparative statics effects take the form of a mono-
tone comparative statics (MCS) prediction: if the implicit tax on exports A is positive,
then the VER will cause the extremal price equilibria to increase (Milgrom and Roberts,
1994; Villas-Boas, 1997). Evaluating the price impact of VER in the BLP framework is

then equivalent to testing for the presence of MCS.

There are two difficulties in implementing such a test. First, the model that BLP
bring to the data contains an additional source of randomness: firm-specific disturbance
w; added to the average log-cost 7. In presence of such unobserved firm heterogeneity,
BLP prices will no longer be discretely distributed over equilibrium sets; instead, they
will have mixture distributions (in Section 3 we show how such mixtures arise). The
second difficulty in testing for MCS stems from the equilibrium selection being unknown.
For example, assume that the price of the home firm’s product is like the one in Figure 2.
Note that non-extremal equilibria may induce smaller observations with the VER than
without it. In addition, the equilibrium selection can work against the positive effect of
the VER, making equilibria p}, pi and p} quite likely. All we have to work with is the
MCS property: that in the presence of the VER the smallest equilibrium and the largest

equilibrium have increased.

Our main result will be to provide simple conditions under which the effect of extremal
equilibria will prevail for large and small values of the dependent variable. The conditions

are simple and do not require any knowledge of the equilibrium selection; they come in

8The numerical values are obtained by using Matlab statistical software whose precision has been set
to its highest value of le-16. In Appendix B, we report additional numerical results showing overlapping

sets of equilibria for different parameter values in the BLP model.
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Figure 2: Set of equilibria is {p{, p3, p3} before and {pi, pi, pi, pi, pt} after VER.

the form of restrictions on the distribution tails of the disturbance. If they are satisfied,
then the MCS effects that the VER has on extremal equilibria translate into testable
implications on some large and small enough quantile of the conditional distribution of

prices.

3 Structural Model and Results

3.1 Structure

We consider a structural equation given by
r(Y,X) =10, (2)

where 7 : R x R — R is specified by economic theory.? The variables that enter the
structural model in (2) are: a dependent variable Y € R, an explanatory variable X € R,
and a disturbance to the system U € R. When the structural function r is parameterized
by a finite dimensional parameter 6 in ©, one can write (Y, X,0) = U in Equation
(2). We assume that X and Y are observable, but U is not; U can be thought of as

unaccounted heterogeneity in the model.

9Following Matzkin (1994, 2005), we consider structural equations in which U is additively separable.
The methods developed here are not suited for the non-separable problem 7(Y, X,U) = 0. In such cases

the framework in ? may still be applied.



We have in mind the structural equations derived from two classes of economic models.
One class predicts equilibrium values y based on a first-order condition r(y, z) = 0; these
are single-person decision models, such as models solved by a social planner. A second
class predicts equilibrium values y based on a fixed-point condition r(y, z) = p(y,z) —y =

0. The BLP model in Section 2 belongs to the latter class.

Given the function r, the structural econometric model is built by introducing the
disturbance term U in the underlying economic model. Different realizations of U induce
values of Y that deviate from the equilibria predicted by the economic model. The
disturbance U has a clear interpretation as the extent to which a realized Y violates the

exact (undisturbed) equilibrium condition.

When Equation (2) determines Y as a function Y = m(X,U), the distribution of
the disturbance U conditional on the explanatory variable X', denoted Fy|x, determines
unambiguously the conditional distribution of Y, denoted Fy|x. We say that Fy|x is
generated by the structure S = (r, Fyy|x). On the other hand, when Equation (2) has
multiple solutions, a complete specification of the structure must include a rule that
selects a particular realization y from the set of solutions. Such an equilibrium-selection

rule can depend on the realized values of X and U.

Hereafter, we let X C R denote the support of X, and assume that for any x €
X, Fyx—, has a strictly positive density fyx—, on R. The explanatory variable X
can be discrete or continuous. We define the equilibrium set as the set of solutions to
Equation (2) when X =z and U = u: let (z,u) € X xRand &, = {y € R: r(y,z) = u}.

We shall work with the following assumption.

Assumption S1. (i) The function r(y,z) : R xR — R is continuous; (ii) for any z € X,
lim, o 7(y,z) = 400 and lim, o r(y,z) = —oc; (iii) for any (z,u) € X X R, &, is a

finite set. We write E.y = {&1zu, s Enpan} Where £y < oo < &ppuw and ny, = Card(E,y)-

Assumptions S1.i and S1.ii are standard. S1.ii is akin to an Inada condition; in

particular, S1.i and S1.ii imply, by the Intermediate Value Theorem, that a solution to the

10



structural equation in (2) always exists. Assumption S1.iii requires r not to be constant
over any subintervals. By using suitable arguments from differential topology, S1.iii can
be shown to hold generically (see Mas-Colell, Whinston, and Green (1995) for examples
of these arguments). That the number of equilibria only depends on the explanatory
variable X is not a serious restriction; it can simply be satisfied by duplicating elements

of the equilibrium set until the cardinality of the latter no longer depends on U.

We specify the selection rule as follows: let P,, be a probability distribution over &,,,
which assigns probabilities {714, ..., Ty, } to outcomes {&1u, -, Enywu }y Such that m, > 0
and 7, , > 0. For a given x, different realizations u can affect the support of P,,, but
not the probabilities assigned to different outcomes in the support. For example, P,
might assign equal probabilities across all elements of &,,. The conditional distribution

of Y is then obtained as follows.

Proposition 1. Assume S1 holds, and fix a selection rule Pxy. Then, for any x € X
there are distribution functions Fyyx—(y) = fj;o I(ivu < Y)fuix=c(u)du, for 1 <i <
N, such that, j > 1 implies that Fjy|x—, first-order stochastically dominates Fiy|x—;.

And, for any y € R, FY|X::0(7J) = Z?:zl WixFiY\sz(y)-

When multiple equilibria exist, Fy|x is generated by the structure S = (r, Fyx, Pxv),
which now includes the additional element Px;. Proposition 1 shows that under S the
conditional distribution of the dependent variable has a mixture form. When equilib-
rium is unique, the results of Proposition 1 reduce to the usual expression of the image

distribution Fy x of Y given X: Fyx—,(y) = Fyjx=o (r(y, x))

In general, the structure S may not be known. We work with a class of structures
that share a qualitative feature: they exhibit complementarities between the explanatory

variable X and the dependent variable Y.
Assumption S2. r(y,x) is monotone increasing in z on R.

Assumption S2 says that x and y are complements. Such complementarity usually

follows from a supermodularity property of the primitive model. The key feature of S2

11



is that it implies a MCS property: the extremal equilibria of r(y,z) = 0 increase with
x (Milgrom and Roberts, 1994; Villas-Boas, 1997). See Figure 1 for an illustration. We
now review briefly some of the many economic models that satisfy Assumptions S1 and

S2.

3.1.1 Individual decision maker

Consider models of individual decision making, in which the dependent variable is one-
dimensional, and determined through the first-order condition of an optimization prob-
lem. An important class of such models are the ones solved by a social-planning prob-
lem, such as growth and macroeconomic models in Barro and Sala-I-Martin (2003) and
Ljungqvist and Sargent (2004). Other examples include models of firms’ investment
choices used for testing if investment is sensitive to Tobin’s q (Hayashi, 1982; Hayashi

and Inoue, 1991).

3.1.2 One-dimensional equilibrium

Consider one-dimensional equilibrium models where equilibria are fixed points. For ex-
ample, in a two-player game one can compose the two players’ best-response functions,
similarly to how we dealt with BLP’s model in Section 2. As a consequence, duopoly
models generally have the structure we need. Cournot n-firm oligopoly models also re-
duce to a one-dimensional equilibrium model by an aggregation procedure as described
by Amir (1996). One can thus examine if entry of additional firms to a market causes a
decrease in prices as in Amir and Lambson (2000). Additional examples can be found in
overlapping-generations models, such as the ones in Ljungqvist and Sargent (2004), and

two-good general equilibrium models.

12



3.2 Main Result

The presence of complementarities between X and Y is the basis of our main result: we
show that an increase in x implies an increase in all the sufficiently large (and small)
quantiles of Fy|x—,. The result will follow from combining Assumption S2 with restric-

tions on U.

Consider z; and x5 in X with z; < x5. Let ny = n,, and ny = n,,. How does the
MCS property translate into observable implications on Fy|x—,, and Fy|x—,,? Denote
Fy| x = 1 — Fy|x the conditional distribution tail of Y. Let m; = m,, and ma; = mja,.
Using the mixture result in Proposition 1 and focusing on the largest equilibria, we then

have:

Fyix—u,(y) v X mar () Dort | F iy x= o1 (1)) Froyix =25 (1)]

)

Y) Z 2 24 Fyyix= xz(y)/pnzYlX:m(y)]
) 1
)

FY‘X:fBQ (3/) n2Y | X=xs

Y
Yy 7T2n2

n1Y‘X xT1
<

(3)

| |

ngY\X To

where the second inequality follows because my,, > 0, ij| Xeuy(Y)/ me‘ X=u,(y) > 0, and

because stochastic dominance implies Fyyx—.(y) < Fuyyix—s ()

The upper bound in Equation 3 involves the probability of the largest equilibrium
Tan,—0N Which we place no restrictions other than being positive—as well as the ratio of
the distributions Fn1y| X=z, and Fn2y| X=az,- Lhese distributions are unknown and depend
on the locations of the largest equilibria; hence they are difficult to control. A careful
change of variables, however, transforms the problem so that (in the limit) the behavior

of their ratio depends solely on the properties of r and Fyx.

Lemma 2. Under S1 and S2, and given (yo,x) € R x X, we have Iy < &uou) =
I(u < ré(y,x)) for anyy = yo, where r¢(y,x) is the non-increasing envelope of r(y, x)
n [yo, +00), i.e. 1(y,x) = inf{q(y) : ¢ is non-increasing on [yo, +00) and q(y) >
r(y,x) for all y € [yo, +00)}.

e idea in Lemma 2 is to consider a non-increasing transformation ¢ which coincides
The id L 21st d t i t ¢ which d

13



with r around the largest equilibrium (Figure 3). For y > yo then

Y| X =21 (V) _ fﬁoiy’xl) Juix=e, (u)du _ Fuix=z(r°(y,21))
n2Y|X=x2 (y) fre(y,a;g) fU\X:xg (u)du FU|X:$2 (Te(y, 372))

— 00

(4)

Now, how the increase in the largest equilibria translates into Fy|x—,, and Fy|x—z,,
depends on two factors: (i) the limit behavior or 7¢(y, z1) and 7°(y, z5) as y grows, and
(ii) the limit behavior of the distribution Fyx. On (i), recall that, by S2, r(y,x) is
monotone increasing in x. Hence r(y,x;) < r(y,x2), which given the continuity and
limit conditions in S1 implies r°(y,z1) < r°(y,x2) for all y € [yy, +00). We allow for
two cases. In the first, we control the limit ratio of r(y,x;) to r(y,zs) (e.g. as when
r(y,z) = —|0x|y). In the second, we control the difference between r(y, z1) and r(y, x2)

(e.g. asin r(y,x) = 0z —y). Each case requires an assumption on Fyx.

Assumption S3. (i) lim, ., [r(y, x1)/7(y, z2)] = A, where A € [0, 1); (ii) Fyx is rapidly
varying at —oo; (iii) [Fyjx—q (u)/Fujx=s, ()] is bounded as u goes to —oc.
Assumption S3’. (i) limy ;o [r(y, 1) — r(y, z2)] = § with § < 0; (ii) Fyy|x oln is rapidly

varying at 0; (iii) [Fyjx=z; (v)/Fujx=s,(v)] is bounded as u goes to —oo.

Take Assumption S3: property S3.ii requires that the tail of the distribution Fyjx
is not too heavy. Recall that an increasing positive real function F' is rapidly varying
at a if lim, ., F(Ax)/F(x) is 0 for A € (0,1) and +oo for A > 1. Rapid variation is
a well-known condition in the statistics of extreme values, which is satisfied by most
distributions familiar to practitioners. Property S3.iii, on the other hand, ensures that
Fyr|x=z, does not decrease towards 0 faster than Fyx—,,. This property is trivially
satisfied when U is independent of X, and accommodates some interesting cases where
U and X are dependent (see Section 4.1.2). Assumption S3 implies that the last term
in Equation (4) converges to 0 as y grows. Indeed, let A; € (A, 1): then by S3.i there is

y1 € R such that r(y, z1) < \i7(y, 2) whenever y > y; and hence r°(y, z1) < A\7°(y, 2).
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Figure 3: Plots of y — r(y,x) (dashed line) and y — 7°(y, z) (solid line) with z fixed.

As Fy|x is increasing, we have:

FU\X:xl(re(ywrl))
FU\X:QJQ (Te(yv 'TQ))
. FU|X:JC1 (Alre(y7 IQ))
< lim
y—too  Fy|x—z, (r°(y, T2))
. lim FUX::vl()\lre(yaxQ))} [FU|X=21(Te(y>$2)))

y—+oo | Fyix=a (r°(y, 02)) | | FUjx=2,(r(y, 72))
A B

limy 4 o

(5)

By S1.ii, r goes to —oo as y gets large, and so does its envelope r¢; hence B in (5)
remains bounded as y increases. Using the rapid variation in S3.ii, the term A goes to 0

as y increases, and so does the product A x B. As a result,

Fyx=a (7°(y,
hm U|X* I(T (y ‘rl)) — 0 (6)
y—+00 FU|X:m2 (re(y7 fﬂg))

Similarly, under Assumption S3'.i, d(y) = r(y,z1) — r(y,x2) converges to 6 < 0. Let
01 € (0,0) and y; € R be such that, for y > v}, we have d(y) < é;. Hence, d°(y) < 0,
where d°(y) = r°(y,z1) — r°(y,z1). Applying the previous reasoning to exp[d®(y)], we
again get the limit result in Equation (6). Combining the latter with Equations (3) and

(4) then shows that: -
Fyix=2,(y)

lim

= 0. 7
y=+0 By |x—u,(Y) ™)
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The statement in (7) is crucial. It says that for large enough values of y, 21 < x9 implies
that the corresponding conditional distributions are ordered.!® This is equivalent to an

ordering of large enough conditional quantiles. We have thus shown:

Theorem 3. Assume S1, S2, and either S3 or S3° hold. Fix a selection rule Pxy. Let
(11,...,25) € XN be such that: x1 < ... < xy. Then, there exists §y € R such that for
all y = yn, Fyixes (y) < ... < Fy|x—uy(y). Equivalently, there exists an € (0,1) such

that for all o € [an, 1), F;‘%X:xl(a) <...< F;ﬁszN(a).

The previous analysis has focused on quantiles with probabilities close to one, but an

analogous result continues to hold for probabilities close to zero.

4 Discussion

Theorem 3 derives observable implications of models with complementarities between
the dependent variable Y and the explanatory variable X, which are valid despite the
possible presence of multiple equilibria. These implications come in the form of order
restrictions on the extreme (high and low) quantiles of Y conditional on X. We now
discuss important features and possible limitations of the results of Theorem 3 when
used for testing the presence of MCS; we also compare and contrast our approach with

alternative testing methods.

4.1 Main Features

We first discuss the applicability of our results.

4.1.1 Robustness to Identification Failures

We have shown that the MCS property has implications for the conditional quantiles of

Y given X. Given a sample of observations on the dependent and explanatory variables,

10When x; = x» the conditional distributions of Y are identical.
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these quantiles are by definition identified and consistently estimable using standard non-
parametric methods. In particular, no additional restrictions on the structural function
r are needed for estimation. Consequently, the results of Theorem 3 can be used to test

for complementarities whether or not the structural function r is identified.

It is in general difficult to provide primitive conditions for identification, so most
models merely impose it as an assumption. There are, however, important results that
analyze identification under additional restrictions on the structure. Say that the equi-
librium in Equation (2) is wnique. When the explanatory variable X and the latent
disturbance U are known to be independent, primitive conditions for identification of the
structural function r can be found in Matzkin (2005), for example. When U is suspected
to be endogenous (e.g. if X is a policy treatment, the deviations U may be more likely
under some policies than others), it is often assumed that a mean independence condition
E(U|Z) = 0 a.s. holds with respect to an instrument Z € Z. In models in which the
reduced form is separable Y = m(X) + U for example, Newey and Powell (2003) charac-
terize identification of m in terms of the completeness of the conditional distribution of
X given Z. Treatment of the nonseparable case Y = m(X, U) requires additional mono-
tonicity assumptions on m as well as independence of U and Z (Chesher, 2003; Blundell
and Powell, 2003). Extending those results to frameworks in which multiple equilibria

exist is still an open question.

4.1.2 Unobserved Heterogeneity

Given that Theorem 3 does not require the structural function r to be identified or
estimable, its results are fairly robust to departures from independence or mean inde-
pendence conditions between the latent disturbance U and the explanatory variable X.
The implications of MCS remain valid even in absence of an instrument Z, which, due

to the nonlinearity of the structural model in Equation (2) may be difficult to construct.

As a consequence, our testable implications apply even in models in which U is

endogenous. In particular, under the assumptions of Theorem 3, the individual hetero-
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geneity U can be correlated with the explanatory variable X in a reasonably general way.
Say that conditional on X, U is normally distributed with mean u(X) and variance .
When p(x) is non-increasing in x, a simple application of L’Hopital’s rule shows that
Assumptions S3.ii and S3.iii hold. A simple example would be the one in which X and
U are jointly normally distributed with a non-positive correlation coefficient. A positive
correlation between X and U, under which Assumption S3.iii fails, prevents the econo-
metrician from learning anything about MCS property. The intuition behind is simple:
following an increase in X, U can in those cases increase so as to decrease the extremal

equilibria.

In addition to being correlated with the explanatory variable, we allow U to be
heteroskedastic conditional on X. Say that given X, U is normally distributed with
mean 0 and variance o(X). If o?(z) is non-decreasing in z, then Assumption S3.iii
holds. Therefore a normal disturbance whose conditional variance increases with the

equilibrium level satisfies our Assumption S3.

4.2 Limitations

We now caution for possible limitations of our approach.

4.2.1 Tail Observations and Robustness to Outliers

Theorem 3 suggests that one can use observations from the extreme (high and low)
quantiles of Y conditional on X in order to test for the presence of MCS. Such a test
shall obviously be affected by the presence of outliers. When the latter are caused by
mismeasurements, methods proposed in Chen, Hong, and Tamer (2005), for example, can
be used to filter the errors prior to applying the test. Unless outliers are easy to detect,
one should be careful when considering very large (or small) quantiles of the dependent
variable. In particular, the results of Theorem 3 lend themselves to the study of cases
where X can take some relatively small number of values for which large numbers of

observations of Y are available. Evaluations of policy effects, such as those following the

18



VER, are one such example: typically X then takes on two values.

4.2.2 Continuous Explanatory Variable

The cutoff level g in Theorem 3 is conditional on a realization of the sample of explana-
tory variables, (x1,...,2y) € XY. This is not a problem in applications in which the
explanatory variables are treated as given. In some situations, however, an unconditional
version of Theorem 3 is needed. The latter follows easily when the explanatory variables
are discrete: it suffices to apply the reasoning in Section 3.2 to all the points in X. When
the explanatory variables are continuous, we need to include an extra step which will
ensure that x’s do not get too close: given a random sample (Xq,..., Xy) drawn from
Fx, consider the joint distribution of the N — 1 spacings between the consecutive order
statistics (X7',..., X¥). Fix any € > 0, and let 65 > 0 be such that the probability of
all spacings being greater than dy, is greater or equal than 1 —¢e. Applying the reasoning
in Section 3.2 to x and x + d we get the following corollary to Theorem 3:

Corollary 4. Assume S1, S2, and either S3 or 83’ hold. Fix a selection rule Pxy.
Given € > 0, there exists yy € R such that for all y > yn, Pr{Fy|X{v(y) < ... <
FnX% (y)} = 1 —e. Equivalently, there exists ay € (0,1) such that for all o € [an, 1),

Pr{F}j'lX{V(a) <... < Fgllxjjvv(a)} >1—c.

In a sense, Corollary 4 gives a stochastic version of the orderings in Theorem 3.

4.2.3 Test Implementation

Finally, the conditional distributions (and quantiles) of the dependent variable are typi-
cally unknown and need to be estimated from the data. A statistical test of the orderings
in Theorem 3 and its Corollary 4 can then be constructed by deriving the asymptotic
distribution of the conditional quantile estimators—the key is to derive the latter by im-
posing assumptions on the distributions Fy;x while maintaining our agnosticism about
the equilibrium selection Pxy. When using the asymptotics, however, one needs to con-

trol the speed at which the probability @y increases (or decreases) relative to the sample
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size N. See 7 for results, albeit in a somewhat different framework.

4.3 Comparison with Direct Testing Methods

The conditional quantile implications of Theorem 3 are derived under Assumptions S3 or
S3’, which restrict the tail behavior of the conditional distribution of U given X. That
only tails of Fyx are concerned is not surprising: recall that Theorem 3 uses the MCS
property, which holds only for extremal equilibria. In standard econometric practice, on
the other hand, the focus is rather on the conditional mean of U. A routine assumption
is that of mean independence between U and an instrument Z. We now discuss how such
moment conditions may be exploited to construct alternative tests for complementarities.
We shall focus on direct methods which consist in consistently estimating 7, then testing

whether the monotonic increasing property in Assumption S2 holds.

4.3.1 Moment Conditions

Say that in addition to Assumptions S1 and S2, the structural model in Equation (2) is

known to satisfy:
Assumption S3”. There exists an observable Z € Z such that E(U|Z) =0 a.s.

Assumption S3” says that U is mean independent of an instrument Z.!'' In order
to derive its implications on the observables, we need the conditional distribution of
Y given both Z and X. The latter is easily obtained using the same reasoning as in
Proposition 1: Fy|x—z z=:(y) = > %) TiwzFivix=s,2=-(y) for any (y,z,2) € Rx X x Z,

where Fiyx—pz-.(y) = fj;o Iz < ) fuix=s2=-(u)du, and fyx,z is the conditional

HTt is worth pointing out that Assumptions S3.iii (or S3’.iii) and S3” are not mutually exclusive;
in Section 4.1.2 we have given an example of a disturbance U that verifies S3.iii and is also mean

independent of X.
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density of U given (X, Z), which we assume to be strictly positive on R. Then,

Brvix)iz =2 = B[ +°or<y7x>dFY|X_x,Z_z<y>\Z:z}

—00

- .
= K Zﬂ-wz/ T(?J,I)dﬂy\xzx,zzz(y) Z ==z
| i=1 -
s .
= F me/ Ufu|x=gz=-(w)du| Z = z| =0, (8)
| i=1 —o0

where the third equality uses the fact that &, — wu is a one-to-one mapping, and the
fourth combines the mean independence condition on U with Z?:zl Tiz. = 1 for every
(x,z) € X x Z. Despite the presence of multiple equilibria, Assumption S3” induces a

familiar conditional moment restriction on the observables Y, X and Z.

4.3.2 Identification

Whether or not Assumption S3” may be used for estimation depends on the ability of
the restriction E[r(Y,X)|Z] = 0 a.s. to identify the structural function r.'* We now
argue that, while Equation (8) remains unaffected by multiplicity, the same cannot be

said about its solutions (in 7).

For this, consider a simple parametric structural model r(Y, X, 0) = 6*Y + 0Y? —
Y3+ 60X, in which X and Y are complements if and only if the scalar @ is positive. Now,
multiple equilibria for Y pose a basic problem: the solutions to the moment equation
E[r(Y,X,0)|Z] = 0 a.s. are impossible to compute without specifying an equilibrium
selection procedure. As a result, (1) different selection procedures lead to different solu-
tions (in @) to this equation, and (2) under some procedures the solution is not unique,
leading to non-identification. In Appendix C we give numerical examples of two equilib-
rium selections correlated with X, for which the set of solutions to E[r(Y, X, 0y)|X] = 0,
when 6y = 1, is either {1} or {—1,1} (see Appendix C for details).!®> Thus, even when

12Chernozhukov, Imbens, and Newey (2007) provide conditions under which the restriction

E[r(Y,X)|Z] = 0 a.s. suffices to identify r, however, only locally.
130n the other hand, correlation between X and the equilibrium selection is to be expected in many

applications. For example, Bohnet, Frey, and Huck (2001), Cooter (2002), and Funk (2007) argue that

the main effect of certain policies is to affect equilibrium selections.
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X is exogenous, and the structural parameter 6 locally identified, one cannot identify
the property of complementarities based on the conditional moment restriction alone.
One could expect identification to be even more difficult in structural models that are

nonparametric.

4.3.3 Estimation

In Section 4.3.2 we have emphasized how equilibrium multiplicity may lead to lack of
identification. Here we assume that, nevertheless, the structural function r is identified,

say, by imposing assumptions regarding equilibrium selection procedure in addition to

S37.

Despite identification, estimating r based on the conditional moment restriction E[r(Y, X)|Z] =
0 a.s. is likely to suffer, as pointed out by Chernozhukov, Imbens, and Newey (2007),
from an ill-posed inverse problem. In particular, the nonparametric estimator 7 of the
structural function r is likely to be discontinuous, so that small differences in the realiza-
tions of Y, X and Z are likely to lead to large deviations in the estimator 7. Consistent
estimation of » may in such cases require additional restrictions on the set of possible
structural functions, similar to those used in Blundell and Powell (2003) and Newey and
Powell (2003), for example. It is worth pointing out that even with a consistent estimator

in hand, testing for monotonicity of the structural function remains a difficult problem.

In models in which r is finitely parameterized by 6, it may be the case that Assump-
tion S2 reduces to a simple restriction on the structural parameter. When the latter is
identified, consistent estimation based on E[r(Y, X, 6)|Z] = 0 a.s. can be done along the
lines discussed in Ai and Chen (2003), for example. Testing for complementarities can

then be carried out using standard techniques.
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4.3.4 Inference on Parameter Sets

In Section 4.1 we have emphasized the robustness of our approach to departures from
identifiability of r, as well as independence and /or mean independence of the unobservable
U. In some models, however, additional information on the structure may be available
which can be used for estimation and inference when the structural function is only
set identified. For example, in parametric models, Chernozhukov, Hong, and Tamer
(2007) construct estimators and confidence regions for the identified set, and develop
an inference method. Extending their methods to nonparametric settings is, however,
an open problem. In nonparametric regression models, Santos (2007) proposed methods
which could be used to test whether a weak monotonicity property in S2 holds on the

identified set.

While robust to identification failures, the methods based on set identification suffer
from another problem: the monotonicity in Assumption S2 may not hold globally on the
identified set. Section 4.3.2 and Appendix C contain one such example: for one identified
value of the structural parameter, X and Y are complements, while for the other they
are substitutes. In such cases, testing for complementarities between X and Y is still

possible based on the conditional quantile implications derived in Theorem 3.
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SUPPLEMENTARY APPENDICES



Appendix A Proofs

Proof of Proposition 1. For any (y,z) € R x X, Fy|x—(y) = fj:oo Pou(y) fUix =2 (u)du
with Puu(y) = Y07 Tiwl(&izw < y), where T denotes the standard indicator function:
For any event A in B where B is the Borel o-algebra on R, I(A) = 1 if A is true, and 0

otherwise. Combining all of the above we get:

ng +00
Fyix=a(y) = Zﬁw/ I(ivu < ¥) fUix=2(u)du.
i=1 —o0

For any v € X and any 1 < i@ < ng, let Fiyx—,(y) = fj;o L(&izu < Y) fuix—s(u)du
for all y € R. Then Fiy|x—,(y) : R — R is right-continuous, lim, . Fyy|x—.(y) = 0,
limy oo Fiv|x=2(y) = 1, and Fjy|x—, is nondecreasing in y. Hence, Fjy|x—,’s are dis-
tribution functions and the conditional distribution of the dependent variable can be
written as in Proposition 1. Moreover, for any (y,z) € R x X we have Fyy|x—.(y) —
Fiyix=:(y) = fj;o L&wu < Yy < &ou)fux=s(u)du > 0 whenever &z > Eizu, i€
Fivix=:(y) < Fiy|x=2(y) whenever j > i. So, Fjy|x=, first-order stochastically dom-

inates Fiy|x—, for any j > . ]

Proof of Lemma 2. Fix (yo,z) € R x X': continuity and limit conditions on r(y, ) in S1
then ensure that the envelope r¢(y, z) is well defined on [y, +00). Now consider y > yo.
That 1(y < &npen) = L(u < r8(y, ) follows from showing that 7¢(&,, vu, ) = 7(&nyau, T),
as ¢ is non-increasing and &, ., is the largest equilibrium. We proceed in two steps.
First, we show that for all y > &, .. we have r(&,,.u,x) > 7(y,z). If that were not
the case then there would exist a ¢y > &, . such that 7(&,, 00, 2) < 7(y/,z). But this
is incompatible with &,_,, being the largest equilibrium: we would have u < r(v/, x), so
given the limit condition S1.ii on r at 400 there would be an equilibrium larger that
Enazu- Second, we show that r°(&,,mu, ) = 7(&nyeu, ). By definition of r¢, we have
7 (Enpaus ) = T(npau, ), 0 we need to rule out that the strict inequality holds. We
again reason by contradiction: assume that r°(&,,zu, ©) > 7(§n,2u, ©). From the first step
we know that r(&,,.u, ) > r(y,x) for all y > &, ... Then, consider the function which

coincides with 7¢(y, x) for y < &, 4 and with min {r¢(y,z),r(y,z)} for y > &, 4. This



function is non-increasing, larger than r, and smaller than r¢ at &,,_ .., which is impossible

by the definition of . ]

Appendix B Details on the BLP Example

This appendix contains a detailed discussion of the simplified BLP model considered
in Section 2; extensions to many firms and products are discussed in the end of the

appendix. On the demand side, we use a random utility specification:
up; = —ap; + & + Sh, (9)

in which wy,; is the utility of product i (¢ = 1,2) to individual h (i = 1, ..., I), p; and &; are
respectively the price and the unobserved characteristic of product i, —a (o > 0) is the
taste parameter on price assumed constant across individuals, and ¢, is a stochastic term
that represents the deviations from an average behavior of agents and whose distribution
is induced by unobserved characteristics of the individual h, unobserved characteristics

of product 7, and their interactions.

A baseline specification of the random utility in Equation (9) moreover assumes that
¢p are iid across products ¢ and individuals h. We depart from the iid assumption and
assume that the individual deviations from the average utility depend on the level of

prices through a variance term. Specifically, we model ¢, as:

sh = g(pip—i)en, (10)

where the function g : RY — R% is twice continuously differentiable and such that
g (z) = 0 and 0 < z¢'(z)/g(x) < 1 for all x > 0. The innovations €, are iid across
products i and individuals h with a distribution function F' that satisfies E(e,) = 0
and var(e,) = 1, so that ¢g*(p;p_;) corresponds to the variance of the disturbance ¢, in
the random utility specification (9). For example, assuming that €,’s are (standardized)

Gumbel random variables, the resulting individual choice model is logit with conditional



heteroskedasticity.'4

Under the assumptions on g, the market share of Firm i, denoted s;, equals F(A),
where we have let A = a(p_; — p;)/g(pip—i). The first derivative of s; with respect to p;
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0s; o pip—z'gl(l?ip—z‘) (p—i )]
— = —f(A 1+ — -1 ,
Op; f( ) g (pz‘p—z') g (Pz‘p—i) Pi

which given the conditions imposed on ¢ is always negative. Hence, the demand for
product i, D;(p;,p—;) = Ms; where M is the market size, is decreasing in p; which is as

we would expect.

On the supply side, we assume complete specialization and constant marginal costs
across firms:!°

In¢; = 7. (11)

The presence of the VER—implemented as an implicit tax on firms’ production—is
modeled by a dummy variable VER;. Firms’ profits, denoted II;, are then given by:
I; = (p; — ¢; — AVER;)D;(pi, p—1), where X is the implicit tax parameter. Each firm is
assumed to choose prices which maximize its profits. Then, the first order condition of
Firm i’s profit maximization 0I1;/0p; = 0 can be written as:

~ J(A)(pi — i — AVER;)a piv—ig'(pip—i) (P=i -
F<A> g(pz'p—z') b g(pz‘p—z‘) < Di 1)} -0 (12)

Equilibrium prices p; and p, necessarily satisfy the system of first order conditions relative

14The probability density of a standardized Gumbel random variable is: f(e) = o~ exp[—(e — u)/o —
exp(—(e — u)/o)] for € > 0, where o = \/6/m and u = —yo, with v denoting Euler’s constant, v ~ 0.577.

The corresponding distribution function is F(e) = [1 + exp(—e¢/o)] L.
15Tn the model Berry, Levinsohn, and Pakes (1999) bring to the data, the log-costs also contain an

additive unobserved random cost component w; which is such that E(w;) = 0.



to Firm 1 and Firm 2.1 Combining Equations (11) and (12) we then get:
In(pi — b(pi, p-i, @) = AVER;) —7 =0, (14)

in which the markups b are given by:
F(A iP—i i (Dip—i —i -
b(pi.pr. ) (&) g(pip—i) [ | Pir—ig (pip )(29__1” |
fA) o 9(pip—i) pi

Note that the markups b are nonlinear functions of the demand parameter «, and the

prices p; and p_;; the nonlinearities in b are induced by both g and F'.

In what follows, we assume that only Firm 1 (the foreign firm) is subject to the VER.
Writing Equation (14) for Firm 1, and combining it with its equivalent for Firm 2 (the

home firm), we then obtain the following system:

hl(pl - b(p17p27 a) — )‘VERl) -7 =0 (15)

In(py — b(pa, p1,)) = = 0, (16)

The pricing equation (1) is then obtained by substituting p; = f(p1, VER;) obtained
from Equation (15), into py = [(a2(p1,0) in Equation (16). Note that in Equation (1)
we let p = po denote the home firm’s (Firm 2’s) price, while VER = VER; is the
VER dummy on the foreign firm (Firm 1). Table 2 gives numerical examples of BLP
equilibrium prices obtained by solving the system of Equations (15)-(16), under the
assumptions that F' is standardized Gumbel, and that the heteroskedasticity g is of the
form: g(x) = p + exp(—7/z). These are meant to complement the numerical results

presented in the body of the paper.

1611 order to check that a solution to Equation (12) maximizes Firm i’s profits, we need to check that

the second order condition §%I1;/9p? < 0 holds. At the optimum, we have

;o F(A) {2 [1 n (1 Gt AVERi) pip—ig/(pip—i)}
op? pi — ¢i — AVER; Di g(pip—s)
2 I /
p2,9" (pip—:) f (A)F(A)}
—-A i — Ci — )\VERI — . 13
® ) + Ap_ig' (pip-i) f2(4) (13)

Given our assumptions on g, the second order conditions are satisfied for all symmetric equilibria as we
then have A = 0 so f/(A) = 0. For all other equilibria, we check numerically that the second order

condition is satisfied.



Table 2: BLP Equilibrium Prices (p1, p2) in a Logit Model with Conditional Heteroskedas-
ticity
VER; =0 VER; =1 VER; =0 VER; =1
(2.0339,2.0339)  (2.0494,2.0455) — —
(3.2623,3.2623)  (3.2087,3.2039) — —

(3.8982,3.8982)  (3.9482,3.9438) (3.1238,3.1238)  (3.2087, 3.2039)
NoTE: Model parameters are ag = 0.2748, NoOTE: Model parameters are ag = 0.3841,
v2 = 0.0789, Ay = 0.0087, po = 0.1411, and v3 = 0.0923, A3 = 0.0010, p3 = 0.1755, and
Ty = 14.9974 with g(z) = p2 + exp(—72/x). T3 = 11.0009 with g(z) = p3 + exp(—73/x).

We end our appendix on BLP with a discussion of the version of the model with
many firms and products. Our ideas can be used on models with multidimensional
dependent variables, as long as the model has complementarities among the different
dimensions. Complementarities ensure that extremal equilibria change monotonically
with the explanatory variable. Typical examples of models with complementarities are
games of strategic complements (Vives, 1990; Milgrom and Roberts, 1990; Milgrom and
Shannon, 1994).

i From Berry, Levinsohn, and Pakes’s (1995) estimates, BLP conclude that prices were
not strategic complements in the automotive industry in the period they analyze, a result
they regard as surprising. Even if this poses a problem for replicating BLP’s analysis, the
most interesting use of our methods is with new data, where strategic complements seem
likely to be the norm. There is a clear intuitive idea that rivals’ increases in price makes
one want to increase, not decrease, prices; Milgrom and Shannon (1994) show formally
how strategic complements in models of price competition arise under mild conditions

on demand (see also Vives (1999)).

Finally, BLP’s rejection of strategic complementarities is based on the results obtained
under detailed parametric assumptions on the underlying structure. Given the difficulties
related to the estimation of structural parameters when multiple equilibria are present
(see Section 2.2.2), it may be sensible to use our approach as an alternative: it can
be interpreted as a joint test of strategic complementarities and monotone comparative

statics.



Appendix C Multiple Equilibria and Identification

We exhibit a simple example which illustrates how in models with multiple equilibria,
the equilibrium selection procedure may interfere with identification of finite dimensional

parameters in structural models with conditional moment restrictions.

Say that the structural model is given by:
Y +0Y:-Y?+0X =U (17)

where Y is a scalar dependent variable, 6 is a real structural parameter of interest,
X is a scalar explanatory variable and U is a scalar disturbance term assumed unob-
served. The conditional distribution Fy x of Y given X is induced by the structure
S = (6y, Fyx, Pxuv), in which Pxy denotes the selection procedure according to which a
particular equilibrium for Y is chosen from the set of solutions (given 6 = 6y, X and U)

to the structural equation (17).

We consider the case in which there are complementarities between the explanatory

and dependent variables, so 6y > 0. Suppose that Fyx satisfies:
EU|X) =0 as. (18)

The above mean independence condition implies the following moment condition on the
observables:

O3E(Y|X) +6,[E(Y?|X)+ X] — E(Y?|X) =0 as. (19)

The left hand side of Equation (19) defines a quadratic function g of 6, g(0) =
O’E(Y|X) + 0[E(Y?X) + X] — E(Y?X); a parameter value 6 of 6 is then said to
be identified if for any 6, g(#) = 0 a.s. implies # = 6,. We now show that different

equilibrium selection procedures lead to different identification outcomes.

For concreteness, consider the case in which the true value of the structural parameter
in Equation (17) is 6y = 1, X and U are independent and their respective distributions
are as follows: X can take only two values, x = —8/27 and x = —14/27 with equal

probability, while U is normally distributed with mean 0 and standard deviation 8/27.
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Figure 4 plots the structural function r(y, z,0) = 63y + 0y [y* + ] — y* as a function
of y, with z fixed and 6, = 1. The mapping y — r(y,x,1) is nonlinear and for any
u € [=5/27 + x,1 + x|, the structural equation r(y,z,1) = u admits multiple equilibria

for y. When u < —5/27 4+ x or u > 1 + 2 on the other hand, the equilibrium is unique.

Figure 4: Plot of y — r(y,z,1) with x = —14/27 (solid line) and z = —8/271 (dashed
line). Horizontal lines are at —5/27 + = and 1 + o with = —14/27 (dotted) and
x = —8/27 (dot-dashed). Vertical (dotted) lines are at —1, —1/3, 1 and 5/3.

Table 3 gives the values of the first three non-centered conditional moments of Y
given X, under three different equilibrium selection procedures: (1) P"e! chooses the
largest equilibrium with probability one; (2) P™¢ chooses the middle equilibrium with

probability one; and (3) P'% chooses the smallest equilibrium with probability one.

First, consider an equilibrium selection procedure P%;; which would make the con-
ditional expectation of Y equal to zero: E[Y|X] = 0 a.s. Specifically, using the values
from Table 3, one such a procedure is given by mixing P™e" and P'°% with probabilities

that depend on x and are given by:



Table 3: Conditional moments of Y given X under different equilibrium selection proce-
dures.

x=—8/27 x=—14/27
rphigh Pmid Plow Phigh meid 'Plow
E[Y|X =] 14941 0.3260 —0.6429  1.3095 0.3407 —0.8274

E[Y2X =2] 22999 02672 0.7277  2.0293 0.2770 0.7522
E[Y3|X =z] 34977 02969 —02115  2.8203 0.0992 —0.5938

;U rPhigh meid fPlow
x=—8/27 30.083% 0 69.917%
r=—14/27 38.721% 0 61.279%

Under Py, , the equation g(f) = 0 a.s. reduces to [E(Y?|X) + X] — E(Y?|X) = 0
a.s. which is linear in 6 and has a unique solution 6y, = 1. In other words, the mean

independence restriction in (18) suffices to identify 6y = 1.

On the other hand, consider an equilibrium selection procedure P%;; which is such

that F[Y?|X]+ X = 0 a.s. For example, let P%;; be given by:

,PEU rPhigh fpmid fPloW
xr=-8/27 1.431% 0 98.569%
r=—14/27 13.783% 0 86.217%

Under P%;, the equation g(f) = 0 a.s. becomes §*?E(Y|X) — E(Y?|X) = 0 a.s., whose
solutions are fy = {—1,1}. In other words, fy = 1 is not identified under P%,. Rather,
under P%,; it holds that the mean independence restriction in (18) identifies the set
0y = {—1,1}. However, as the elements of the identified set have opposite signs, it is

impossible to conclude under P%,; whether X and Y are complements.



