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Abstract

We estimate a structural model of a sponsored search auction model. To accommodate

the “position paradox”, we relax the assumption of decreasing click volumes with position

ranks, which is often assumed in the literature. Using data from “Website X”, one of the

largest online marketplaces in China, we find that merchants of different qualities adopt

different bidding strategies: high quality merchants bid more aggressively for informative

keywords, while low quality merchants are more likely to be sorted to the top positions for

vague keywords. Counterfactual evaluations show that the price trend becomes steeper

after moving to a score-weighted generalized second price auction, with much higher

prices obtained for the top position but lower prices for the other positions. Overall

there is only a very modest change in total revenue from introducing popularity scoring,

despite the intent in bid scoring to reward popular merchants with price discounts.
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Yu-Wei Hsieh∗ Matthew Shum† Sha Yang‡

1 Introduction

Presently, sponsored search is, by far, the most salient online advertising format. A report

from the Internet Advertising Bureau in 2013 shows that sponsored-search advertising is

now generating more than $18 billion per year, nearly half of the annual online advertising

spending in US. Due to its effectiveness and other benefits, sponsored advertising, which

was pioneered by search engines like Google and Bing, have now also been adopted on

many shopping platforms (akin to Amazon, eBay, etc.) to help merchants promote their

products. For example, when users type “Nike shoes” in Amazon’s search box, sponsored

ads are displayed at the bottom of the search result page, along with the “organic” results

(those generated by Amazon’s search algorithm).

Consumer behavior vis-à-vis sponsored ads is likely to be quite different depending on

whether the ads are on a shopping platform, or on a page of general search results. Ads

on shopping platforms contain very specific information – including price, shipping pa-

rameters, delivery time, new or used condition, etc. – and allow consumers to selectively

click on those ads that meet their preferences. Users only need to click on links for options

they are seriously considering, which can garner substantial traffic even for ads at lower

positions. As such, this leads to a so-called “position paradox” (Jerath et al. (2011))

– an empirical finding that ads in higher positions may attract fewer clicks than ads in
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lower positions. On the other hand, with ads on search engines, which typically do not

contain price or specific product information, a “top-down” search – in which users click

firstly on the top ad and proceed downwards – is more likely. Such behavior leads to a

decreasing trend in click-through rates (CTR) across ad positions.

Auctions are the dominant mechanism whereby sponsored ad positions are sold on the

Internet, with competing merchants bidding for the available positions. Many existing

models of sponsored search auctions simplify the characterization of equilibrium bidding

by directly assuming that click-through rates for sponsored ads strictly decrease with ad

position.1 These studies have mainly focused on sponsored ad auctions run by search

engines, for which this assumption may be appropriate, as discussed above; however,

it may be unrealistic for sponsored search advertising on shopping platforms, which we

consider here.

In this paper, we propose a general structural model of sponsored search auctions.

We estimate the model using a unique dataset of sponsored search auctions at a large

Chinese shopping platform. Since our study company is a shopping platform, our model

specification is geared to accommodates the “position paradox”. Methodologically, we

develop a novel econometric setup which exploits the equivalence between the position

auctions and the classical assignment game of Shapley-Shubik (1972).

Our study website (anonymously dubbed “WebsiteX”) is one of the largest shopping

platforms in China, and one of the largest websites in the world by traffic. For a number

of years, the platform implemented a standard Generalized Second-Price (GSP) auction

to determine ad positions and prices for each keyword. We focus on digital cameras,

which is a very popular product category on this platform.

Our estimation results show that merchants of different qualities adopt different bid-

ding strategies: high quality merchants bid more aggressively for informative keywords,

while low quality merchants are more likely to be sorted to the top positions for vague

keywords. One explanation is that, for digital camera-related keywords, informative

keywords (including specific camera model numbers) are likely to be queried by serious

buyers, and high quality merchants are more experienced and have learned that clicks

from these buyers are more likely to lead to sales. On the other hand, users who query

vague keywords (including brand names and promotional terms) may not be ready to

buy, and so experienced high quality merchants are less interested in these auctions.

Thus we find evidence of both horizontal and vertical differentiation in these auctions;

1Edelman et al. (2007); Varian (2007); Athey and Nekipelov (forthcoming). See Börgers et al. (2013)

for a general discussion of equilibria in these auctions without imposing these restrictions on preferences.
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auction outcomes can be non-assortative, in that higher quality merchants do not obtain

higher positions. Such results would not be consistent with the assumption of decreasing

click-through rates typically assumed in the literature (as discussed above).

To score or not to score? Using our estimates, we proceed to address an important

auction design question, as reflected in our paper’s title. After our sample period, our

study website revised the standard GSP by incorporating popularity scoring, a practice

originally developed by Google. In the score-based GSP auction, the ad position obtained

by a bidder will depend on her bid times a popularity/quality score, which typically

reflects the popularity of a bidder or her ads (as measured by past sales or click volumes).

By introducing scoring, our study website intended to reward “popular” merchants –

those whose previous ads generated many clicks, and sold many products in the past –

with price discounts. Introducing scoring to the GSP auction essentially penalizes smaller

and less prominent merchants and rewards larger merchants (i.e. a less popular bidder

pays a higher price than a more popular bidder for the same position, holding everything

else constant).2

Indeed, soon after our platform implemented such score-based GSP auction, a large

protest organized by small merchants broke out. They blamed the new scoring rule for

making them uncompetitive against big merchants. One small merchant, Longzhi521

complained that “small merchants on WebsiteX are unable to do business anymore, now

WebsiteX is just for the big merchants, its really unfair!” ILoveRainyDays lamented

that he ”recently quit my job to sell on WebsiteX fulltime, but after the change it is

impossible, as a small merchant, to get my ads noticed.” HangzhouWuMing, quoting

an ancient proverb, warns ominously that WebsiteX’s new rules which discourage small

merchants may have bad long-run consequences: “the waters (large merchants) which

carry the boat can also capsize it.”3

Our simulations show that the price trend becomes steeper under scoring, with much

higher prices obtained for the top position but lower prices for the other positions. This

suggests that while the intention of scoring was to reward popular merchants with price

discounts, these discounts were undone (in part) by more aggressive bidding by these

merchants. On the one hand, this confirms the fears of the small merchants quoted

above that they have to pay higher prices to get top positions. However, since CTRs in

2The use of bid scoring in sponsored search auctions has similar implications as bid preference policies

in procurement auctions (see McAfee and MacMillan (1989), or Krasnokutskaya and Seim (2011).)

Generally, a scoring rule which favors stronger (high quality) contractors may lead to higher quality

work, while favoring weaker bidders enhances competition and lowers procurement costs.
3News release from sina.com.cn (date: Sept. 7, 2010)
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our model are not necessarily decreasing in ad position (and indeed are quite random),

the effect on the platform’s total revenue is ambiguous. Our simulations show that,

indeed, there is only a very modest change in total revenue from introducing popularity

scoring. Although other long term benefits from scoring – such as encouraging merchants

to improve ad quality, thus generating more clicks and enhancing the attractive of the

selling platform – are beyond the scope of our analysis, it is remarkable that even the

platform’s short term profits may not be much affected by rewarding popular merchants

with price discounts.

Existing literature. Although sponsored advertising auctions have received great

attention in the theoretical literature (beginning with Edelman et al. (2007) and Var-

ian (2007)), empirical research is still sparse. Börgers et al. (2013) utilize a revealed-

preference approach to test whether bids in Yahoo search auctions satisfied the Nash

Equilibrium inequalities for the sponsored search auction model. Yang et al. (2014)

studied how competition affects sponsored search advertisers’ bidding behavior, and they

modeled bids as equilibrium outcomes using the specification in Edelman et al. (2007).

Athey and Nekipelov (forthcoming) propose and estimate a structural model tailored to

specific features of sponsored search auctions run by US search engines (such as Google

or Microsoft). Specifically, they estimate a model characterized by score and entry un-

certainty (“SEU”), in which bidders face uncertainty when choosing their bids, due to

randomness in a bidder’s quality score over time, as well as in the set of competitors

bidding in the auction at any time.

Our paper is different from the aforementioned studies in several major ways. First,

during our sample period, our study website ran un-scored auctions, which eliminates

an important source of uncertainty in Athey and Nekipelov’s SEU model. Indeed, the

study website started scoring auctions only after our data sample, and the main ques-

tion addressed here is how this affected bidder allocations and platform revenue. Sec-

ond, we allow bidders to have preferences for positions which are not multiplicative

in bidder- and position-specific effects. This is in line with empirical evidence (Jeziorski

and Segal (forthcoming), Jeziorski and Moorthy (2014), Goldman and Rao (2014)) which

contradicts the multiplicative hypothesis. Finally, our dataset, compared to Athey and

Nekipelov’s dataset, contains substantial cross-sectional variation (a large number of key-

word queries), but no time series variation (but click volume and per-click prices averaged

over a one-month period). We model the aggregated outcomes as arising from a static

bidding model, thus abstracting away from changes in bidding behavior over the aggrega-

tion period. This is not an unreasonable approximation for WebsiteX’s auctions because,

during our sample period, all bids were submitted manually and, accordingly, participat-
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ing merchants revised their keyword choices and bids relatively infrequently4

Specifically, in this paper, we estimate a model of sponsored search auctions which is

closely related to the Shapley-Shubik assignment game.5 This connection to the Shapley-

Shubik model also ties our paper to the recent empirical literature using two-sided match-

ing models (e.g. Choo and Siow (2006), Fox (2013), Galichon and Salanie (2012), Gra-

ham (2011)). One important difference vis-à-vis these papers, is that we explicitly model

and estimate the price formation process in the sponsored search auctions we study, while

these other papers focus on explaining the observed allocations.

In the following section we provide background information about the platform and

present the structural model for ad positions and prices from the generalized second price

auction. We derive the crucial link between the auction model and two-sided matching

models, which we exploit in estimation. In section 3, we derive the “Metropolis-Hastings

within Gibbs” Bayesian algorithm to estimate the structural parameters. In Sections 4

and 5, we describe the dataset and present the empirical findings. In section 6 we conduct

the counterfactual analysis to address the “to score or not to score” question. Section 7

concludes.

2 A Structural Model of Sponsored Search Auctions

2.1 Background: sponsored search auctions at “WebsiteX”

WebsiteX is one of the largest online marketplaces in China and, hence, one of the

most prominent websites in the world by traffic. Given the high costs and regulatory and

bureaucratic hurdles associated with opening brick-and-mortar businesses in China, many

small merchants market and sell their wares mainly using internet shopping platforms

like our study website. As a marketplace, WebsiteX has no direct American counterpart,

but shares features of both eBay and Craigslist. Unlike eBay, goods on WebsiteX are not

sold via auction, but rather by merchants posting prices for their products. WebsiteX

provides a platform whereby buyers can make secure money transactions to merchants.

Sponsored search results typically appear as “tiles” on the right-hand side and bottom

margins of each search page (see Figure 3 for an example).

4This differs from advertisers on search engines like Google or Yahoo, who use automated bidding

mechanism which make it easy to revise bids or keywords.
5As such, our work echoes Demange, Gale and Sotomayor (1986) and Fox and Bajari’s (2013) study

of the FCC spectrum auctions, both of which apply an assignment game approach to multi-unit auctions.

Other non-auction settings in which the assignment game has been applied include marriage markets

(Becker (1973)), mergers (Akkus et al. (2013)), and hedonic pricing models (Chiappori et al. (2009)).
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Since WebsiteX is a marketplace, the content and role of its sponsored ads differ

substantially from the ads appearing on search engine result pages (like Google or Yahoo).

As Figure 3 shows, WebsiteX’s sponsored ads (as well as the non-sponsored “organic”

search results) typically contain a picture of the product, price, merchant name and

information, shipping details, and product specifications; in contrast, such details are

typically absent from Google’s sponsored search results, which contain only the URL

along with some brief slogans.

Since WebsiteX is a shopping platform, most of its users have a serious intent of pur-

chasing, and are using WebsiteX to find prices and product specifications to suit their

needs.6 Consequently, as we mentioned earlier, the top positions may not always receive

more clicks (and indeed, they do not, as we will show below). For this reason, the common

assumption in the existing sponsored search auction models (Edelman et al. (2007) and

Varian (2007), Athey and Nekipelov (forthcoming)) that the surplus matrix is supermod-

ular (being the product of a vector of bidder-specific constants and a nonincreasing vector

of position-specific click-through rates) seems inadequate for WebsiteX. Accordingly, in

our setup, we will allow the surplus to vary arbitrarily among merchants and across ad

positions, and also allow click volumes to be non-monotonic in ad position.

2.2 Generalized Second-Price Auction (GSPA)

Next we describe the generalized second-price auction framework. There are N available

positions and M ≥ N + 1 potential bidders (synonymously, merchants) for a generic

keyword auction. If bidder i obtains the j-th position, he obtains valuation (or surplus)

Vij, for all bidders i and positions j. In what follows, without loss of generality we will

index the positions from top to bottom by i = 1, . . . , N , and similarly we will also label

the N + 1 highest bidders by i = 1, . . . , N + 1.

The rules of the generalized second-price auction are as follows: for N positions, the

N -highest bidders will be winners, with the i-th (1 ≤ i ≤ N) highest bidder obtaining

position i at the per-click price equal to the i+ 1-th bidder’s bid. Using the terminology

in Varian (2007) and Börgers et al. (2013), we focus on the so-called “symmetric”

Nash equilibria in this complete-information bidding game.7 The equilibrium conditions

6It has been discussed for a while that many retailers fear becoming Amazon’s Showroom. This

phenomena is even more radical in China as running a retail store would incur more tax and fee liability.

By contrast, running a online store can sidestep these hidden costs. Consequently, the price gap between

online and retail stores in China is even larger than the USA counterpart.
7These are closely-related to the “locally envy-free” equilibria in Edelman et al. (2007). These

equilibria are convenient to analyze, and easy to compute via linear programming; as noted in Börgers
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satisfied by a bid vector (b1, . . . , bM) for M ≥ N + 1 are

Vii − αibi+1 ≥ Vij − αjbj+1, ∀i, j (1)

where αj denotes the click volume for position j. This inequality ensures that, at the

equilibrium, the bidder who obtains positions i (who obtains valuation Vii and makes a

payment equal to the click volume αi times bi+1, the per-click price submitted by the

bidder in position i + 1), does not wish to deviate to position j, for which the surplus

would be equal to the RHS of the inequality.8 Making the substitution pi = bi+1 (that

is, the per-click price for the i-th position equals the bid in the i + 1-th position), we

have

Vii − αipi ≥ Vij − αjpj, ∀i, j. (2)

2.3 GSPA as Two-sided Matching

Our estimation approach relies critically on the reinterpretation of the GSPA as an as-

signment game of Shapley and Shubik (1972). To draw this connection, we consider a

“matching” problem where bidders are matched to positions. We denote by

ui ≡ Vii − αipi (3)

the equilibrium payoff of bidder i, and

tj ≡ αjpj (4)

the equilibrium payoff for the platform from the j-th position. Now rewriting the equi-

librium inequalities (2) above, we get

ui + tj ≥ Vij

with equality (by construction) iff i = j. These are the well-known “no-blocking” condi-

tions from the matching problem with transfers (cf. Roth and Sotomayor (1990; chap.

8)). To see why, consider a bidder i and position j, and assume that ui + tj < Vij or,

equivalently, ui < Vij − tj. In this case, since bidder i’s payoff ui is lower than the net

et al. (2013), no such characterization is available for the asymmetric Nash equilibria. Nevertheless, it

is possible to adapt our estimator to the case of asymmetric Nash equilibria; we leave the details for

future research.
8In contrast, in asymmetric Nash equilibria, Eq. (1) holds only for j > i, but is Vii−αibi+1 ≥ Vij−αibj

for j < i. This recognizes an asymmetry that in order to switch to a lower position, bidder i only needs

to beat the price of that position, but to switch to a higher position, bidder i must beat the bid of the

winner of that position.
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surplus that she would obtain from deviating to position j (=Vij − tj), she would not

agree to the given allocation, and the equilibrium would break down; since the pair of

bidder i and position j would “block” the proposed allocation, the payoffs (ui, tj) cannot

support this allocation in equilibrium.

Moreover, introducing the binary indicators µ(i, j) = 1 if bidder i obtains position j,

and zero otherwise,9 and summing up across all bidders and positions using Eqs. (3,4),

we have ∑
i,j

ui + tj =
∑
i,j

[µ(i, j)Vij − αipi + αipi] =
∑
i,j

µ(i, j)Vij. (5)

This “feasibility” condition is the link between the sponsored-search auction model and

the assignment game, as it is implied by the duality theorem of linear programming for

that latter model. In the remainder of this section, we flesh out this connection.

2.4 Optimal allocation in GSPA: matching Positions to Bid-

ders

If bidder i obtains the j-th position, the valuation function is given by

Vij = δ(Xi, Z
j; β) + εij (4)

where Xi is the vector of bidder i’s characteristics and Zj is the j-th position-specific char-

acteristics. The δ(·) is the deterministic component of the valuation function parametrized

by a finite dimensional parameter β, and εij is the unobservable match-and-auction-

specific valuation.10 We will refer to V the valuation matrix, where the (i, j) entry

of V is Vij. We further assume the unobserved valuation shocks satisfy the following

assumption

Assumption 1. εij is a continuous random variable with mean zero and variance σ2 <∞
with unbounded support on R. εij is mutually independent across index i, j.

An allocation (or matching) µ, is a binary matrix indicating which bidder acquires

which position. We use 1 to indicate the assignment of positions to bidders, and zero

otherwise. For example, if bidder 1 gets the second position, and bidder 2 gets the first

position, the allocation µ is

9Using our indexing convention that bidder i is allocated position i, we have µ(i, j) = 1 for i = j,

and zero otherwise.
10This is a complete information game in which εij is assumed to be observable to all players within

the game but unobservable to the researchers.
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1 2

bidder1 0 1

bidder2 1 0

In the one-to-one assignment game, the row sum and column sum are equal to 1. We

will write µ(i, j) as the (i, j) entry of µ. In a N -by-N assignment game, there are N !

allocations. We will refer to Ω as the set of all possible allocations and µω as an generic

element of Ω, where ω = 1, 2, . . . , N !. The total surplus under allocation µω is denoted

by Sµω(V)

Sµω(V) =
∑N

i=1

∑N
j=1

[
δ(Xi, Z

j; β) + εij

]
· µω(i, j) ≡ ∆µω + Ξµω , where

∆µω =
∑N

i=1

∑N
j=1 δ(Xi, Z

j; β) · µω(i, j) and

Ξµω =
∑N

i=1

∑N
j=1 εij · µω(i, j)

Based on V, the total surplus S(V) for each allocation µω ∈ Ω can be calculated.

Shapley and Shubik (1972) consider the assignment problem of finding the optimal one-

to-one allocation that maximizes the total (social) surplus, as well as the stable price

systems to support/decentralize the optimal allocation. The social planner’s problem,

can be formulated as the following linear program (which we denote (P)):

maxµ(i,j)
∑

i,j Vijµ(i, j)

s.t.
∑

i µ(i, j) = 1,∀i∑
j µ(i, j) = 1,∀j

µ(i, j) ∈ {0, 1},∀(i, j)

(P)

Since there are only finitely many allocations in Ω, a solution always exists in such

maximization problem (Roth and Sotomayor, 1990).11

Lemma 1. Under assumption 1, the optimal allocation (the solution to (P))is unique

almost surely.

11This result contrasts with two-sided matching models without transfers, in which the multiplicity of

stable allocations becomes a major concern; e.g., Boyd et al. (2006), Logan et al. (2008), Menzel (2011),

Hsieh (2011), and Echenique, et al. (2013), among others.

9



Proof. Take any two allocations µl 6= µq, (µl, µq) ∈ Ω. The event {Sµl(V) = Sµq(V)} =

{Ξµl − Ξµq = ∆µq − ∆µl} is a set of measure zero under assumption 1. It immediately

follows that the ordering of {Sµω(V)}ω=1,...,N ! is strict almost surely.

2.5 Equilibrium prices in the GSPA

The linear program (P) yields the optimal allocation of assigning positions to bidders.

Since our goal is to analyze not only allocations, but also prices, we will turn to the

dual linear program, which yields the prices supporting the optimal allocation in equi-

librium.

Recall that we denote by ui the equilibrium payoff of bidder i, and tj(≡ αjpj) the

equilibrium payoff of the j-th position. By the duality theorem of linear programming,

the dual problem of (P) is given by

min
∑N

i=1 ui +
∑N

j=1 tj

s.t. ui ≥ 0, tj ≥ 0,∀i, j

ui + tj ≥ Vij,∀i, j

(DP)

The first set of constraints, ui ≥ 0, tj ≥ 0, are individual rationality condition: both

bidders and search engine should have non-negative profit. The second set of constraints,

corresponds to the incentive compatibility, or no-blocking pair conditions. The set of

(ui, tj) that solves (DP) is denoted the set of stable matchings (see Roth and Sotomayor,

1990). Shapley and Shubik (1972) further show that ui+tj = Vij iff µij = 1. By summing

this across (i, j), we obtain Eq. (5) above, which provides the link between the GSPA

and the assignment game, as we alluded to before.

In general, it is well-known that there exist multiple transfers t = (t1, . . . , tN) that

solve (DP), and there exist bidder-optimal t and platform-optimal t̄.12 This multiplicity

in equilibrium prices raises issues for estimation, as we will discuss below. By contrast,

given Lemma 1, the corresponding optimal matching µ that solves (P) is unique almost

surely.

12The literature on multi-item auction raises a design problem of how specific auction mechanism

may select particular stable matchings. For example, Demange, Gale and Sotomayor (1986) propose an

auction mechanism in which the bidder-optimal stable matching is the equilibrium outcome.
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Within the set of stable matchings t, the generalized second-price auction mechanism

selects a subset in which the transfers are monotonically decreasing in ad position:

{t|t solves (DP) & p1 > p2 > . . . pN ; ti = αipi}. (6)

We will refer to this as the set of “stable per-click prices.”

Example: (Non-)existence of equilibrium in GSPA. While Shapley and Shubik

(1972) proved that the set of stable matchings is always nonempty for arbitrary Vij, this is

no longer true once the additional monotonicity condition (6) is imposed. Hence, without

extra assumptions on Vij or the click volumes, the generalized second-price mechanism

may not necessarily guarantee the existence of a symmetric Nash equilibrium (or equiv-

alently, competitive price system). Consider an example: the valuation matrix is given

by

1 2

bidder1 3 4

bidder2 1 3

and α1 = α2 = 1. The set of stable prices for the Shapley-Shubik assignment game is

shaded in blue in Figure 4. We see that this region lies completely above the 45-degree

line, where p2 > p1 (the price for the second position exceeds that of the top position);

the GSPA, on the other hand, requires p1 > p2. The problem in this example is that both

players value the second position more than the first one, making it impossible to sell

the first position with a higher market price. In our empirical model, our assumptions

on valuations (Assumption 1) allow cases similar to this example to arise with positive

probability. For estimation, we wish to restrict attention only to the set of Vij that

are consistent with equilibrium in the GSPA, which introduces a complicated trunca-

tion problem (similar to that arising in Hong and Shum’s (2003) econometric study of

asymmetric ascending auctions). �

3 Data

We obtained a one-month (in 2010) sponsored-link auction dataset from WebsiteX, which

is the largest online marketplace in China. The dataset includes aggregate information

on 487 keywords of digital camera/camcorder and related accessories. The number of ad

positions ranges from 5 to 9. According to insiders at WebsiteX, merchants there usually

review their keyword lists and make purchase decisions infrequently. As a result, the

actual auction environment is not as complicated as Google or Yahoo!, in which bidders

often apply some automatic bidding algorithm to dynamically manage their positions
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and per-click prices. During the study period, WebsiteX applies standard GSPA without

score weighting. The bidding environment of WebsiteX is therefore more closely related

to the static model described in Edelman et al. (2007) and Varian (2007).

For each keyword string, we observe several sets of variables. First, for each winning

bidder (merchant), we observe their average (over one-month) per-click price, along with

with the aggregate click volume over this month. We fit these data into our static auction

framework by sorting the bidders by their average per-click price, and then placing the

bidder paying the highest average price in the the top position, the bidder paying the

second highest price in the second position, etc. Second, we observe very little about

individual merchants except “quality ratings” which WebsiteX creates (using their pro-

prietary algorithm) based on buyer feedback and merchants’ sales volumes. Specifically,

each bidder is rated on an increasing quality scale from 1 to 20, which is also broken into

quality brackets: top (16-20), high (11-15), medium (6-10) and low (1-5). In our dataset,

there are no top merchants, so in our analysis we will distinguish between three quality

types: low, medium, and high. Third, we construct dummy variables to describe charac-

teristics of each keyword string: 1. Brand, whether the keyword includes a brand name

such as Nikon or Canon; 2. Specific, whether the keyword includes a specific model/series

number, such as D300s or 500D; 3. Promotional, whether the keyword includes promo-

tional terms such as “cheap” or “sale”. Summary statistics for these variables are given

in Table 1.

A first look at the data. We begin with some reduced form statistics and tabula-

tions from the data to motivate details of our model specification. From the perspective

of search engines it is important to know how advertisers’ bidding strategies are related

to their quality rankings and keyword characteristics. Do certain types of bidders bid

more aggressively for certain type of keywords? What is the sorting pattern between

quality and rank? Table 2 contains a contingency table summarizing bidders’ quality

versus the ad positions they obtained. Overall, the evidence for assortative matching in

bidder quality across ad positions is mixed. On the one hand, from the top panel of the

table, we see that about one-third of the high-quality bidders (=7.2% of total bidders)

get the top ad position in the auctions in which they won a position, and this percentage

falls across positions. However, for medium quality bidders, we see that most of them are

sorted to position 5 (16.1%) followed by 3 (15.6%). The results are qualitatively stable

after doing the analysis separately for different types of keyword queries, as is shown in

the remaining panels in Table 2.

Although it seems that the allocation patterns do not vary with keyword characteris-

tics, the per-click prices and click volumes do move dramatically. The boxplot of log click
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volumes13 and per-click prices are depicted in Figure (1) and (2) respectively. In Figure

(1) we compare the boxplot of log click volumes across the top 5 positions, conditional on

different dummies. First, clearly the assumption of decreasing click volume with rank is

violated since the middle of the boxplot does not decrease when rank decreases. In fact,

only 5 out of 487 keywords have strictly decreasing click volumes. Second, we observe

that keyword characteristics shift the click volume distributions. Keywords containing

specific model number usually receive more click volumes across all ranks of position

(top-left of Figure 1). Keywords containing brand name slightly decrease the click vol-

umes (top-right of Figure 1). It is also interesting to note that keywords containing

promotional terms in fact generate smaller click volumes (bottom-left of Figure 1).

Lastly, we turn our attention to the distribution of per-click prices (Figure 2). We find

that per-click prices are generally higher (and have more extreme outliers) for keywords

containing specific model number (top-left of Figure 2). Adding brand name on average

does not change per-click price, but it does create more outliers (top-right of Figure 2).

Adding promotional terms does not change per-click price (bottom-left of Figure 2).

4 Estimation

Next we consider the estimation of the sponsored search auction using data on the ob-

served allocation as well as the per-click prices. We use a Bayesian approach to estimate

this model. There are a large number of latent variables in this model, relative to the ob-

served variables: in each auction, for the N -dimensional vector of observed bids, there are

N2 corresponding unobservabled: namely, the full set of valuations {Vij}i,j=1...N that each

merchant has for each position. An important virtue of the Bayesian approach is the use

of “data augmentation” (Tanner and Wong (1987)), whereby these latent variables are

treated as unknown parameters, and jointly inferred in the estimation procedure.14

However, the multiplicity of stable per-click prices, mentioned earlier, raises difficul-

ties with a Bayesian estimation approach, as it leads to indeterminacy of the likelihood

function for the prices. In this paper, we complete the model by assuming particular

parametric equilibrium selection rules, as we describe below.15

13As there are some keywords that receive extremely large amount of click volumes, for graphical

presentation purpose we depict the boxplots in the log scale.
14In contrast, in a frequentist framework, these latent valuations must be integrated out of the esti-

mating equations; this is difficult using typical numerical integration methods (quadrature, simulation)

due to the large dimensionality of the integration.
15In Appendix B, we consider an alternative approach, using bounds based upon the struture of the

equilibrium price set, which is agnostic as to the equilibrium selection rule. Such an approach turns out
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4.1 The likelihood of auction allocations and prices

The central component of our Bayesian estimation procedure is the derivation of the joint

likelihood function for the auction outcomes (the matching of bidders to positions and

the corresponding prices). This is the focus of this section.

As the set of bidders and the number of positions vary from auction to auction,

defining the random vector p and random matrix µ requires additional care to avoid

a labeling problem. Following the previous section we will sort the element of p, pi,

in decreasing order, and therefore Xi corresponds to the bidder who pay pi. Under

this indexing system, the allocation µ will be the identity matrix. Suppose the econo-

metrician observes T independent keyword auctions indexed by t = 1, 2, . . . , T . In

each keyword auction t one observes two sets of dependent variables, the allocation

µt and the vector of per-click prices pt = (p1t, . . . , pNtt). The exogenous variables are

Xt = (X1t, . . . , XNtt),Zt = (Z1t, . . . , ZNtt), αt = (α1t, . . . , αNtt). Let V denote the collec-

tion of latent valuation matrices for all keyword auctions (V1,V2, . . . ,VT ), and similarly

we define µ = (µ1, µ2, . . . , µT ), p = (p1,p2, . . . ,pT ) and (X,Z, α). The posterior is given

by

f(θ,V|µ,p,X,Z, α) ∝ L(µ,p|θ,V; X,Z, α)p0(θ,V|X,Z)

The specification of the priors is given in the Appendix. Here we focus on the form

of the likelihood, given by

L(µ,p|θ,V; X,Z, α) = ΠT
t=1L(µt,pt|θ,Vt; Xt,Zt, αt). (7)

Importantly, the likelihood above differs from the likelihood which would be optimized

in a frequentist setting (ie. MLE), because the unobserved valuations V are treated as

conditioning variables. This is due to “data augmentation”, as discussed above. In the

frequentist likelihood, in contrast, V cannot be conditioned on (since it is unobserved),

and would need to be integrated out.16 The likelihood (7) can be further decomposed

into

L(µt,pt|θ,Vt; Xt,Zt, αt) = L1(pt|µt, θ,Vt; Xt,Zt, αt)L2(µt|θ,Vt; Xt,Zt) (7)

the two terms of which are the conditional likelihoods of per-click prices (given the

allocation and valuations), and the allocation (given valuations). The explicit forms

to be quite computationally challenging, compared to the approach we use in this paper.
16Specifically, the frequentist likelihood is L(µ,p|θ,V;X,Z, α) =∫
· · ·
∫
L(µ,p|θ,V;X,Z, α)dG(V|X,Z) which is difficult to evaluate due to the large dimension-

ality of V.
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of L1 and L2 are derived from, respectively, the dual and primal LP problems for the

assignment game. We consider each component in turn.

The component L1. For expositional simplicity we will drop the auction index t

for now. Conditional on µ, the set of stable per-click prices is a convex polyhedron de-

fined by a set of linear inequalities derived from the dual LP problem of the assignment

game, which comprise (i) the “no-blocking pair” inequalities (Eq. (1)); (ii) the individual

rationality constraints, that Vii − ti ≥ 0; and (iii) the monotonicity and non-negativity

conditions on per-click prices: p1 > p2 > . . . > pN ≥ 0. The details of these linear

inequalities are given in the appendix; we let P(V, α) denote the polyhedron of equilib-

rium per-click prices in the sponsored-search auction, given a set of bidder valuations and

position-specific click volumes (V, α). As P depends on the realization of unobserved εij,

the set of stable per-click prices itself is a random closed convex polyhedron.

Correspondingly, the conditional likelihood for the per-click prices is a distribution

supported on a convex polyhedron: L1(pt|µt, θ,Vt; Xt,Zt, αt) = L1(pt|µt,P(Vt, αt), λ),

where λ, a probability measure over P, denotes an equilibrium selection rule whereby

pt is selected from P(Vt, αt). To proceed, we consider parametric equilibrium selection

rules to complete the likelihood specification, following Bajari et al. (2010).17 Specifying

such a distribution in our case is nontrivial, as the support P(V, α) depends on the latent

variables. We consider two parsimonious specifications. First, we assume that all prices

satisfying the no-blocking conditions are drawn with uniform probability, which is equal

to the reciprocal of the volume of the polyhedron of values of prices which satisfy the

linear inequalities {p : A(αt)p ≤ b(Vt)}:

L1(pt|µt,P(Vt, αt), λ) = 1(A(αt)pt ≤ b(Vt))
1

vol(P(Vt, αt))

In what follows we will call this the “Uniform” specification of equilibrium selection.

Second, we assume that each component of pt, pit, is independently draw from beta

distribution defined on [p
it
, p̄it] truncated to A(αt)pt ≤ b(Vt), where ΠNt

i=1[pit, p̄it] is the

smallest bounding box of P(Vt, αt):

17In the existing literature, another common approach for dealing with multiple equilibria is to identify

and compute bounds on the structural parameters of the model, thus avoiding the explicit specification

of the equilibrium selection rule λ; e.g., Ciliberto and Tamer (2009); Beresteanu et al. (2011); Galichon

and Henry (2011) among others. Applying this approach in our context is briefly discussed in Appendix

B.
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L1(pt|µt,P(Vt, αt), λ) ∝ 1(A(αt)pt ≤ b(Vt))Π
Nt
i=1

{(pit − pit)
a−1(p̄it − pit)b−1

B(a, b)(p̄it − pit)
a+b−1

}
,

where B(a, b) is the Beta function. Under this specification (which we will denote the

“Beta” specification), the shape parameters (a, b) in the beta distribution will be addi-

tional parameters to be estimated.

The component L2. Conditional on Vt, the likelihood L2 is binary (0-1) val-

ued:

L2(µt|θ,Vt; Xt,Zt) = L2(µt|Vt) =

{
1 if Vt rationalizes µt

0 otherwise

Moreover, at the observed (pt, µt), all Vt which lead to a nonzero value for L1 automat-

ically rationalize µt, and lead to a nonzero value of L2. As a result, L2 is redundant and

we can simplify

L(µt,pt|θ,Vt; Xt,Zt, αt) ∝ L1(pt|µt, θ,Vt; Xt,Zt, αt).

4.2 Estimation algorithm

We estimate the structural parameters via a Metropolis-Hastings within Gibbs sampler

(Robert and Casella (2005)). We summarize the procedure here, but give complete details

in the appendix. The “outer loop” is a Gibbs sampler which loops sequentially over

three conditional densities: the conditional density of θ, the conditional density related

to equilibrium selection of multiple equilibrium prices, and the conditional density of the

latent valuations Vij (the augmented component). Since these are difficult to sample from

directly, within each Giibs step we use a Metropolis-Hastings approach to obtain draws

from these three conditional densities. The main idea closely follows that of Albert and

Chib (1994), and Logan et al. (2008).18

4.3 Specification details

We end this section with some details of our model specification. First, in our model we

allow the click volumes (the α’s) to vary non-monotonically across positions, in line with

the evidence presented earlier in Figure (1). However, in our data, there are instances

when the top position may receive zero clicks (cf. Table 1), but still attract bidders.

18Logan et al estimate a two-sided matching game without transfers. Their Gibbs sampler does not

take into account multiple equilibria, and hence cannot be directly applied here.
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Such an occurence would not be explicable in our model unless we allow for bidders to be

uncertain about the click volume at the time they are submitting their bids, and hence

bid based on expectations about the click volume (so that the realized click volume may

not coincide with the ex ante expectation).19 Hence, we allow for this by assuming that

bidders’ beliefs about αjt, the click volume of the j-th position at auction t, satisfies the

following shifted log-normal process (and are independent of their valuations Vij):

log(αjt + 1) = γj0 + γj1Nt + γj2specifict + γj3promotionalt + γj4brandt + ηjt,

where Nt is the number of available positions and ηit follows N (0, σ2).20 The unknown

parameters can then be estimated by OLS, and the expected click volume is given by

E[αjt] = exp(γj0 + γj1Nt + γj2specifict + γj3promotionalt + γj4brandedt + σ2
j/2)− 1.

We use the estimated E[αjt] instead of αjt in our estimation procedure.21

Second, for bidders’ valuations Vij we consider two specifications which contain inter-

actions of bidder-specific and position-specific variables:

Model I

Vijt = β0 + β1specifict

+β2promotionalt + β3brandt

+β4highi
1
j

+β5mediumi
1
j

+β6highi
1
j
× specifict +β7mediumi

1
j
× specifict

+β8highi
1
j
× promotionalt +β9mediumi

1
j
× promotionalt

+β10highi
1
j
× brandedt +β11mediumi

1
j
× brandt + σεijt

(11)

where εijt is an i.i.d. standard normal random sequence. In this specification, we impose

a hyperbolic decay (1/j) in coefficients across positions. Note that while this specification

imposes monotonicity in the coefficients across positions, the trend is allowed to be either

decreasing or increasing (depending on the sign of the β’s).

19Indeed, without this, zero click volume for a position would imply zero transfer for the top position,

which would unreasonably imply zero transfer for all positions in the model.
20A similar specification is used in Yang et al. (2014), but here we do not impose that αi decays from

high to low positions.
21Even after regression smoothing, E[αjt] is still nondecreasing in j in some cases. An important

restriction of the assignment game framework is that we cannot allow the (expected) click volume to be

bidder-specific. We will return to this point when discussing the counterfactual simulations below.
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Model II

Vijt = β0 + β1specifict

+β2promotionalt + β3brandt

+β1jhighi +β2jmediumi

+β3jhighi × specifict +β4jmediumi × specifict

+β5jhighi × promotionalt +β6jmediumi × promotionalt

+β7jhighi × brandt +β8jmediumi × brandt + σεijt

if j ≤ 5 and = σεijt if j > 5

(12)

This is a more flexible specification which allows each of the β coefficients to be position

specific, and no longer imposes a monotonic trend as in Model I. (For tractability, we as-

sume these coefficients to be zero for positions lower than 5, as click volumes and per-click

prices for such lower positions are generally so small that they can be ignored.)22

Comparison: model specification in existing papers. Our specification de-

tails here contrast with those in Varian (2007), Edelman et al. (2007), and Athey and

Nekipelov (forthcoming), who consider a multiplicative specification of bidder’s valua-

tions:

Vij = viαj. (5)

In tandem with the assumption that click volumes decrease in ad position (α1 > α2 · · · >
αN), this multiplicative specification (5) implies that every bidder has exactly the same

preference ordering over positions: everyone prefers a higher position. Subsequently, it

is easy to show that the optimal allocation is perfectly assortative matching: the k-th

position is assigned to the bidder having the k-th highest valuation. In contrast, our

specifications of valuations and click volume described earlier allow us to accommodate

the richer patterns in allocations and click volumes which were evidenced in the data.

�

5 Estimation Results

Table (3) contains the results of the Model I specification. Since the results are similar

using both the uniform and beta equilibrium selection rules, we will focus on the uniform

rule (results in third column of Table 3) in the discussion. We find evidence for positive

assortative matching between bidders’ quality and ad positions. The posterior mean of

coefficients of high and medium quality dummies are all positive (688.96 and 479.75,

22See the appendix for a discussion of parameter identification for these specifications of preferences.
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respectively), and distinct from zero (larger than 3 times the standard deviation). Fur-

thermore, the magnitude of the coefficient of high quality is larger than that of medium,

implying that the top quality bidders have the highest valuations, all else equal.

However, there is substantial heterogeneity. We see that this positive assortative

matching pattern is further amplified in auctions containing product-specific keywords

(the interactions with “specific” are 539.45 and 516.41 for high and medium bidders,

respectively). Since the positive assortative matching is extremely strong in product-

specific keyword auctions, it is less likely that low quality bidder would win top positions

here. In contrast, the interactions with “brand” are strongly negative (-341.05 for high-

quality bidders, -395.04 for medium quality), and offset the positive coefficients described

earlier. This finding suggests that high quality online (camera) merchants have a rela-

tively low assessment of keyword strings containing brand names, so that lower quality

merchants stand a higher chance of winning such auctions. (The interactions are likewise

negative for the promotional keywords, but not as large in magnitude.)

These results imply horizontal differentiation across different types of keywords, as

high quality merchants have relatively higher valuations for keywords including specific

model names, and relatively lower valuations for other types of keywords. This differ-

ence may be explained by heterogeneity in the consumers who use the different keyword

queries. For cameras, keyword queries with model-specific keywords result in the most

narrow range of search results. Major camera manufacturers usually use unique model

numbers to distinguish their products from others. For example, Nikon’s DSLR (digital

single-lens reflexive) camera models typically start with a “D” followed by numbers; e.g.,

D3, D90, D300s, etc. Similarly, Canon models typically begin with numbers followed by

“D”; e.g., 550D and 5D.23 Hence, shoppers querying with model-specific keywords are

probably well-informed consumers who have a clear idea which specific products they are

interested in, and are searching with a strong intention of purchasing. Our results indi-

cate, then, that high quality online merchants, who are typically also more experienced,

gravitate towards more narrowly defined keyword queries which are likely to be made by

serious buyers.

In contrast, shoppers who use brand names to search may be more interested in brows-

ing and collecting information about different camera models; searching for, say, “Nikon”

will return a wide variety of models and accessories across many price points. These con-

sumers may have a more muted intention of purchasing, and our results imply that high

quality online merchants – again, those who are more experienced – have correspond-

23Fujifilm uses the combination of “X” and numbers, Sony uses “A” and numbers, Pentax use “K”

and numbers, and Olympus usually starts with “E”.
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ingly lower assessments of these keywords. Finally, the design of WebsiteX ads partially

neutralizes the effect of additional promotional terms. Most of the sponsored links di-

rectly contain price information (Figure 3), making it extremely easy for consumers to

compare different prices on the internet. Hence, their purchase probabilities are unlikely

to be swayed by purely marketing terms such as “big sale”, rendering these promotional

keywords of little value to the more-experienced high-quality merchants.

Table (4) and (5) summarize the estimation results of model II. Again, we focus on

the results for the uniform equilibrium selection rule (in Table 4). The main differences

between the Model I and Model II specifications is that the latter allows the parameters

in bidder’s valuations to be completely flexible vis-a-vis position rank. But even after

allowing this flexibility, we find qualitatively similar patterns in valuations compared with

the more restrictive model I results. As before, we find that high-quality bidders have

relatively higher valuations for top positions in keyword queries involving product-specific

keywords, but they have relatively lower valuations for top positions in queries involving

promotional of brand-specific keywords. Thus our finding of horizontal differentiation in

preferences appears robust to different specifications of bidders’ valuations.

Quantitatively, the more flexible Model II specification does yield some additional

findings. In some cases, it is the second position that generates the largest value for high

quality merchants, not the first position; for specific keywords, as an example, high quality

merchants value position 2 most highly: the coefficient for position 2 is 203.12=230.99-

27.87, while for position 1 it is only 112.22=16.39+95.83. Similarly, medium-quality

merchants also value the second position most highly in specific keyword queries. This

phenomena may be related to the empirical fact we found in the click volume data, that

often it is the second position that generates the largest click volume, even after the

regression smoothing. From the merchants’ perspective, the second position is almost

as good as the first slot, because the click volume is comparable with the top but the

per-click price is lower.

However, when the valuation matrix is not positively assortative, which is the case

in our results, then it is unclear whether the GSP mechanism is socially optimal. As

pointed out by Athey and Ellison (2011) and Chen and He (2011), the sponsored-link

auction also plays the role of information intermediary. If the links are sorted according

to merchants’ quality, then it allows the consumer to efficiently search for merchants who

fit their quality needs. If the valuation matrix is positively assortative between quality

and ranking, then high quality merchants will bid aggressively and hence GSP is an

efficient way to convey information to online shoppers.

On the other hand, as we noted before, WebsiteX merchants typically post their
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prices on the sponsored ads, thus providing consumers with the most important piece of

purchase-related information without requiring further clicking behavior. In this setting,

consumer search may be less relevant and, hence, the click volume in WebsiteX is less

regular than described in the literature motivated from Yaoo!, Google and Microsoft;

e.g., Varian (2006), Athey and Nekipelov (forthcoming).24

Finally, the estimated coefficients of the Beta distribution parameters a and b are

positive, with a >> b, for both the Model I and model II estimates (bottom of tables

3 and 5). This implies that the equilibrium selection density function is left-skewed, so

that higher prices are much more likely to be chosen. This suggests that the observed

prices are better explained as optimal for WebsiteX, rather than for the merchants.

6 Counterfactual: The Effects of Bid Scoring

Using our estimation results, we now turn to the main policy question of this paper, which

is assessing the effects of the bid-scoring policy which WebsiteX enacted only shortly after

our sample period. This bid scoring was implemented using a score-weighted version of

the GSPA (which we will call WGSPA hereinafter); that is, the positions are allocated by

ranking the product of each bid times a “popularity score” for this bidder. Specifically,

letting κi, i = 1, . . . , N denote the bidder-specific popularity scores, the positions are

assigned according to the weighted bids: κ1b1 > κ2b2 > · · · > κNbN . Furthermore, the

bidder winning position i pays a per-click price pii such that bidder i’s score κipii is

exactly equal to the score of the bidder in the i+ 1-th position:

κipii = κi+1bi+1 or pii =
κi+1

κi
bi+1. (13)

The total payment of a bidder in the i-th position is αipii. This mechanism essentially

rewards the high quality advertisers with price discounts (if κi > κi+1, then pii < bi+1,

while pii = bi+1 under the unscored GSPA rule); at the same time, this also incentivizes

online merchants to improve their quality. Intuitively, offering price discounts may reduce

the platform’s revenue.25 We show, however, it is possible that the per-click price can be

even higher under WGSPA.

Importantly, in the WGSPA, the implicit “price” that the bidder in position i must pay

to obtain position j differs from bidder to bidder (depending on their score κi), and hence

24While it is difficult to collect price data from WebsiteX, we collected a limited sample of screen

captures and found no noticeably trends in product prices across ad positions.
25Indeed, Myerson’s (1981) classic work suggests that, for standard auctions, a platform may be able

to raise expected revenues by discriminating against high-valuation bidders.
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the resulting game cannot be formulated as an assignment game à la Shapley-Shubik (in

which agents are essentially price-takers). Suppose a generic bidder is indexed by i, and

a generic position and the bid paid for that position is indexed by j. An allocation µ is a

one-to-one function that maps each bidder’s index to the corresponding position index.

µ(i) = j means that bidder i is assigned to the j-th position, and the inverse mapping,

µ−1(j) = i, would identify who is assigned to the j-th position.

Since the WGSPA cannot be formulated as an assignment game, the equilibrium

allocation may not be unique. An allocation and a sequence of bids (µ; b1, . . . , bN , bN+1)

constitutes a symmetric Nash equilibrium if the following inequalities are satisfied26:

1. κµ−1(1)b1 > κµ−1(2)b2 > · · · > κµ−1(N+1)bN+1 (Allocation Rule)

2. αipµ−1(i)i ≤ Vµ−1(i)i for all i (Individual Rationality)

3. Incentive compatibility:

Vµ−1(i)i − αipµ−1(i)i ≥ Vµ−1(i)j − αjpµ−1(i)j, for all (i, j)

where the counterfactual deviation prices are defined by: pµ−1(i)j =
κµ−1(j+1)

κµ−1(i)

bj+1

Sources at WebsiteX tell us that one key element in determining their score index κi

is the historical performance and click volume of the advertiser i, which is highly cor-

related with WebsiteX’s own quality rating system (see section 4). Therefore, we per-

form the counterfactual analysis under two alternative scoring systems (1) a coarser

one with κi ∈ {1, 2, 3} ≡ {low, medium, high quality}; and (2) a finer one with κi ∈
{3, 4, . . . , 15}.27

We simulate the per-click prices p̃t under the new mechanism. We also compute

the corresponding componentwise upper bound p̄t, and the componentwise lower bound

p
t
. Due to the computational burden of computing SNE of WGSPA, we only consider

auctions with no more than 7 positions. Complete implementation details are given in

the appendix. The summary statistics of the simulated (cross-sectional) per-click price

distribution under different model specifications are summarized in Tables 6 and 7.

Results. For simplicity, we focus on the results for the coarser scoring rule, in Table

6, in our discussion. First, bid scoring appears to “steepen” the price gradient across

positions, with the top position increasing in price but lower positions decreasing in

price. Specifically, in the Model I-Uniform results, the price per click for the top position

increases, on average, by 12 RMB (around 2 USD) relative to the baseline unscored

26See Varian (2007) for more details.
27As we do not have the data for the losers, we assume κN+1 to be the lowest score.
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scenario, while price for the second position decreases by 3 RMB (around $0.50). Results

are similar for Model II: there, the price for the top position increases by 6 RMB (around

$1) and the price for the second position also increases (by 2 RMB = $0.30), but the

prices for all lower positions decrease relative to the baseline scenario.

The price increases for the top positions are striking, especially as the bid-scoring rules

were intended to reward popular merchants (those with high scores) with price discounts.

To assess the extent of price discounting under the bid-scoring system, in Table 6 we also

provide summary statistics for the “bid-discount ratios”
κj+1

κj
for position j, which are

a measure of the price discount (cf. Eq. (13)). When this ratio is less than one, then

the bidder winning position j was given a price discount, while if it exceeds one, then

the bidder paid a price premium. We see that, across all four specifications, and across

the top four positions, this ratio was less than one in over 80% of the simulations. This

implies that the prices changed in response to bid scoring despite the winning bidders

being given price discounts. Apparently the price increases for the top positions were

triggered by more aggressive bidding in response to the introduction of bid scoring.

In Table 6, we also provide summary statistics for the bid-discount ratios
κj+1

κj
for the

baseline unscored scenario. There, we see that these statistics are not much different

from those generated in the bid scoring scenarios. This implies that bid-scoring does

not increase the degree of assortative matching in the allocation positions – it does not

appear that larger, more popular merchants were systematically more likely to end up in

top positions after the move to bid scoring. Thus while the fears of the small merchants

quoted in this paper’s introduction – that they have to pay much higher prices to get

their ads in top positions – seem justified to some extent by our simulation results, at

the same time popular merchants are not more likely (relative to the baseline scenario)

to get these top positions.

Finally, the right-hand side of Table 6 shows that total platform revenue from the

auctions remains unchanged from bid scoring. At the least, the finding that revenue does

not decrease upon the introduction of bid scoring may justify WebsiteX’s move toward

WGSPA: it can promote long term benefits beyond the scope of our analysis (such as

improvements in ad quality, and buyer responsiveness to ads) without sacrificing short

term revenue.

7 Conclusion

We conclude with a brief summary of some main points from our study. Empirically, we

uncover some horizontal differentiation between different types of keywords, as high qual-
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ity merchants have relatively higher valuations for informative keywords, and relatively

lower valuations for vague keywords. This suggests that high quality bidders, who are

typically also more experienced merchants, gravitate towards more narrowly defined key-

word queries which are likely to be made by serious buyers, and leave the top positions in

broader keyword queries for less experienced (lower quality) merchants. Counterfactual

evaluations show that the price trend becomes steeper under the score weighted gener-

alized second price auction, with much higher prices obtained for the top position but

lower prices for the other positions. Apparently, while scoring the auction grants price

discounts to popular merchants, our findings suggest that scoring also heightens the bid

competition, thus leading to higher prices for top positions. Overall, we do not find large

effects on platform revenue and sorting patterns from shifting to a scoring rule.

Our methodological approach is also novel as it is motivated by the equivalence be-

tween symmetric Nash equilibria in GSPA, and stable outcomes in the classic assign-

ment game of Shapley and Shubik (1972). To accommodate some stylized empirical

facts in sponsored search auctions, our specification generalizes previous work by allow-

ing bidders to have preferences for positions which are not multiplicative in bidder- and

position-specific effects, and click volumes to be nondecreasing with position ranks. For

estimation, we utilize a Bayesian procedure and develop a Metropolis-Hastings within

Gibbs sampler.

Inevitably, some strong assumptions underlie our analytical framework in this paper.

It is possible, albeit at the cost of computational expense, to extend our Bayesian esti-

mation procedure to a more general setup, in order to accommodate asymmetric Nash

equilibria (as studied in Börgers et al (2013)), or bidder-specific click volumes (as in

Jeziorski and Moorthy (2014)). We leave these for future inquiry.
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Figure 1: Boxplot of Log Click Volume
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*The pair of numbers on the horizontal axis represents the values of two variables. For example,

Interaction(Rank,Specific)= 3.1 on the x-axis of the top-left graph means “3rd position, Specific dummy

= 1”
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Figure 2: Boxplot of Per-Click Price
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*The pair of numbers on the horizontal axis represents the values of two variables. Per-click prices are

given in Chinese Renminbi (RMB, or “yuan”), with exchange rate roughly 6RMB=1USD. For example,

Interaction(Rank,Specific)= 3.1 on the x-axis of the top-left graph means “3rd position, Specific dummy

= 1”

29



F
ig

u
re

3:
S
am

p
le

S
ea

rc
h

R
es

u
lt

s
in

W
eb

si
te

X

30



Figure 4: Non-Existence of Equilibrium Price System of GSPA

solid black line: no-blocking pair condition; dashed red line: individual rationality condition; blue dotted

line: GSPA condition p1 > p2; shaded area: set of stable matching without imposing p1 > p2.
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Table 2: Contingency Table of Bidders’ Quality versus Position Ranks

All Keywords

Position 1 2 3 4 5

High 7.2∗ 4.9 3.7 3.8 2.6

Medium 12.6 14.6 15.6 14.9 16.1

Low 0.2 0.5 0.7 1.3 1.3

Keywords with Specific= 1

Position 1 2 3 4 5

High 7.1 4.7 3.7 4.1 2.9

Medium 12.7 14.7 15.8 15.0 16.2

Low 0.2 0.6 0.5 0.9 0.9

Keywords with Brand= 1

Position 1 2 3 4 5

High 7.5 4.6 3.7 3.7 2.2

Medium 12.3 14.7 15.5 15.0 16.6

Low 0.2 0.7 0.7 1.4 1.2

Keywords with Promotional= 1

Position 1 2 3 4 5

High 6.6 3.4 3.2 2.7 2.0

Medium 13.2 16.1 16.6 15.9 17.0

Low 0.2 0.5 0.2 1.4 0.9

*All numbers in the table are given as percentage of all bidders.
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Table 3: MCMC Estimation: Model I

Dummy Regressor Posterior Model I Model I
Uniform Eq. Sel. Beta Eq. Sel.

constant mean -151.57 -214.89
s.d. (5.92) (8.00)

specific mean -63.42 -21.96
s.d. (6.82) (7.25)

promotional mean -14.58 -35.65
s.d. (10.10) (12.69)

brand mean 39.65 40.89
s.d. (6.27) (9.98)

high mean 688.96 704.04
s.d. (19.41) (26.86)

medium mean 479.75 563.92
s.d. (12.75) (16.26)

high×specific mean 539.45 382.34
s.d. (21.65) (21.84)

medium×specific mean 516.41 422.27
s.d. (16.60) (15.21)

high×promotional mean -42.53 -139.99
s.d. (23.43) (38.72)

medium×promotional mean -161.82 -86.42
s.d. (20.68) (26.22)

high×brand mean -341.05 -307.86
s.d. (18.08) (25.68)

medium×brand mean -395.04 -405.03
s.d. (14.67) (18.03)

σ2 mode 40484 49429
mean 40385 49513
s.d. (793) (366)

left parameter of beta distr. a mean N/A 3.27
s.d. N/A (0.59)

right parameter of beta distr. b mean N/A 0.83
s.d. N/A (0.09)
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Table 4: MCMC Estimation: Model II-Uniform Equilibrium Selection

Rank of Positions

Dummy Interaction Terms Posterior 1 2 3 4 5

high mean 95.83 -27.87 -360.55 -431.62 -463.62

s.d. (15.34) (26.93) (16.00) (22.21) (24.45)

medium mean -175.62 -140.20 -281.94 -424.62 -359.59

s.d. (26.16) (23.98) (19.24) (31.72) (25.66)

high×specific mean 16.39 230.99 -125.74 -157.83 -294.49

s.d. (34.01) (28.67) (38.07) (44.10) (52.92)

medium×specific mean -15.96 124.32 -190.90 -236.87 -332.36

s.d. (24.92) (24.99) (28.15) (13.95) (23.43)

high×promotional mean -356.05 -336.30 -153.56 -241.04 -78.22

s.d. (22.89) (26.42) (25.57) (33.76) (21.71)

medium×promotional mean -288.32 -324.80 -264.19 -305.36 -313.11

s.d. (21.04) (14.11) (18.97) (31.80) (21.93)

high×brand mean -109.84 -454.61 -47.33 -5.62 -16.25

s.d. (18.72) (27.74) (30.65) (27.37) (37.19)

medium×brand mean -114.13 -385.46 -50.34 96.47 67.63

s.d. (35.35) (22.66) (19.39) (26.89) (23.22)

Non-Interaction Terms Constant Specific Promotional Brand

mean 366.29 306.39 208.95 -70.1

s.d. (20.82) (21.94) (14.89) (19.79)

σ2 mode 36579

mean 36849

s.d. (330)
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Table 5: MCMC Estimation: Model II-Beta Equilibrium Selection

Rank of Positions

Dummy Interaction Terms Posterior 1 2 3 4 5

high mean 19.82 -102.09 -400.17 -483.75 -522.48
s.d. (19.67) (28.49) (17.07) (25.14) (24.15)

medium mean -229.56 -186.11 -338.50 -479.67 -416.46
s.d. (15.04) (15.60) (20.58) (14.98) (20.22)

high×specific mean -217.75 -15.15 -361.31 -401.81 -490.52
s.d. (24.10) (54.45) (52.33) (31.95) (25.76)

medium×specific mean -247.19 -125.35 -426.39 -471.28 -565.03
s.d. (44.74) (35.69) (50.40) (40.62) (29.00)

high×promotional mean -334.95 -363.30 -179.40 -174.20 -124.02
s.d. (34.52) (40.65) (30.01) (26.91) (57.01)

medium×promotional mean -323.63 -351.31 -304.38 -320.22 -345.52
s.d. (31.75) (31.43) (27.12) (27.11) (19.50)

high×brand mean -189.93 -495.68 -134.79 -71.69 -101.03
s.d. (20.33) (20.66) (16.70) (24.47) (23.43)

medium×brand mean -202.43 -459.60 -117.65 19.30 -3.05
s.d. (17.07) (17.93) (26.27) (24.02) (22.43)

Non-Interaction Terms Constant Specific Promotional Brand

mean 397.12 549.03 240.05 10.14
s.d. (13) (34.03) (26.28) (17.96)

σ2 mode 32767
mean 32911
s.d. (668)

left parameter of beta distr. a mean 2.62
s.d. (0.43)

right parameter of beta distr. b mean 0.73
s.d. (0.06)
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Appendix A Complete details of estimation

procedure

A.1 Specifying the Priors

We assume the prior distribution of β follows normal distribution N (β0, B0) and σ2

follows inverted Gamma distribution IG(α0/2, δ0/2). β and σ2 are independent and their

joint distribution will be denoted by π(θ). We further assume that Vij = δ(Xi, Z
j; β)+εij

with εij follows i.i.d. N (0, σ2)28 across the index (i, j) and different auction t. Although

there always exists a stable matching for an arbitrary draw of Vij, it is not the case

once the GSP restriction p1 > p2 > · · · > pN being imposed. The intersection of

p1 > p2 > · · · > pN and the set of stable matchings of Shapley and Shubik may be

empty. When estimating the model we shall restrict our attention to the set of Vt that

can guarantee the existence of an equilibrium29:

{Vt ∈ GSP} ≡ {∃(t1, . . . , tN)|(t1, . . . , tN) solves (DP) & p1 > p2 > . . . pN ; ti = αipi}.

The probability of this region is Pr{Vt ∈ GSP} = c(θ; Xt,Zt) and can be approximated

by simulation.30 This specification, together with the restriction of the existence of

equilibrium, implies that the joint distribution of Vt is a multivariate truncated normal

distribution

f(Vt|θ; Xt,Zt) = 1(Vt ∈ GSP)
ΠN
i=1Π

N
j=1

1
σ
φ
(
Vijt−δ(Xit,Zjt;β)

σ

)
c(θ; Xt,Zt)

,

where φ(·) is the pdf of standard normal distribution. The specification of p0(θ,V|X,Z) is

now completed after specifying π(θ) and f(V|θ; X,Z) since p0(θ,V|X,Z) = f(V|θ; X,Z)π(θ).31

Finally, for the Beta equilibrium selection model, we assume uniform priors over the shape

paraeters (a, b): π(a, b) ∝ 1
c

2
, 0 < c <∞.

A.2 Algorithm

We propose a Metropolis-Hastings within Gibbs sampler to draw (θ, λ,V) from the poste-

rior. Gibb’s sampling loops over the three conditional distributions f1(V|θ, λ, µ,p,X,Z, α) =

28While we use normality assumption in the empirical study, the proposed algorithm here can be easily

applied to other distributions.
29Here the indices 1, . . . , N refer only to the positions, and not to specific bidders.
30See A.3 for the implementation detail.
31By the independence assumption f(V|θ;X,Z) = ΠT

t=1f(Vt|θ;Xt,Zt)
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ΠT
t=1f1(Vt|θ, λ, µt,pt,Xt,Zt, αt), f2(θ|V, λ, µ,p,X,Z, α), and f3(λ|θ,V, µ,p,X,Z, α). As

it is difficult to draw directly from the above conditional densities, one can instead using

Metropolis-Hastings sampler. For f1, we simulate Vt for each t from normal distribution,

truncated to A(αt)pt ≤ b(Vt). This step amounts to impose equilibrium restriction, but

without explicitly adjusting for the effect of multiple equilibria. We then use an inde-

pendent M-H step to correct for it later, essentially weighted by the equilibrium selection

probability. For f2, it is a truncated normal likelihood function and hence can be simu-

lated using standard M-H procedure too. Below is the implementation detail:

1. Conditional on (θ(τ), λ(τ),V(τ)), update V(τ+1) via independence M-H chain

1.1 Simulate

Ṽt ∼ qt(Ṽt|V(τ+1)
1 , . . . ,V

(τ+1)
t−1 ,V

(τ)
t ,V

(τ)
t+1, . . . ,V

(τ)
T , θ(τ), λ(τ))

= qt(Ṽt|θ(τ)) ∝ 1(A(αt)pt ≤ b(Ṽt))f(Ṽt|θ(τ); Xt,Zt).

Following Logan, et al. (2008) we suggest the following steps to simulate Ṽijt
32: 1.

simulate the diagonal elements Ṽiit from normal distribution with mean δ(Xit, Z
it; β(τ))

and variance σ2
(τ), left-truncated at αitpit (individual rationality). 2. Given the

simulated Ṽiit, one then proceed to simulate the off-diagonal elements Ṽijt, i 6=
j. The NBP condition implies that Ṽijt follows normal distribution with mean

δ(Xit, Z
jt; β(τ)) and variance σ2

(τ), right-truncated at Ṽiit − (αitpit − αjtpjt). 3. No-

tice that the monotonicity condition of per-click price does not directly affect the

simulation of Vij. Because the observed data already satisfies the monotonicity

condition, the simulated Vij will automatically lead to an equilibrium polytope of

per-click prices that intersects with the set p1 > p2 > . . . , pN .

1.2 Take

V
(τ+1)
t =

{
V

(τ)
t with probability 1− ρ,

Ṽt with probability ρ,

32The standard GHK simulator does not apply in this case.
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where

ρ = 1 ∧
[ f1(Ṽt|θ(τ), λ(τ), µt,pt,Xt,Zt, αt)

f1(V
(τ)
t |θ(τ), λ(τ), µt,pt,Xt,Zt, αt)

][qt(V(τ)
t |θ(τ))

qt(Ṽt|θ(τ))
]

= 1 ∧
[ L1(pt|Ṽt, θ

(τ), λ(τ), µt,Xt,Zt, αt)f(Ṽt|θ(τ),Xt,Zt)

L1(pt|V(τ)
t , θ(τ), λ(τ), µt,Xt,Zt, αt)f(V

(τ)
t |θ(τ),Xt,Zt)

][qt(V(τ)
t |θ(τ))

qt(Ṽt|θ(τ))
]

= 1 ∧
[ L1(pt|P(Ṽt, αt), λ

(τ), µt)f(Ṽt|θ(τ),Xt,Zt)

L1(pt|P(V
(τ)
t , αt), λ(τ), µt)f(V

(τ)
t |θ(τ),Xt,Zt)

][1(A(αt)pt ≤ b(V
(τ)
t ))f(V

(τ)
t |θ(τ); Xt,Zt)

1(A(αt)pt ≤ b(Ṽt))f(Ṽt|θ(τ); Xt,Zt)

]
= 1 ∧ L1(pt|P(Ṽt, αt), λ

(τ), µt)

L1(pt|P(V
(τ)
t , αt), λ(τ), µt)

.

In particular, if the equilibrium selection rule is uniform then ρ = 1∧vol(P(V
(τ)
t , αt))

vol(P(Ṽt, αt))
.

In this case, Ṽt will be accepted with probability 1 if the resulting polyhedron has

smaller volume relative to V
(τ)
t . To sum up, one would need to independently sim-

ulate T valuation matrices for T keyword auctions, and then run T independent

M-H steps to decide whether to accept the new draws or not.

2. Conditional on (θ(τ), λ(τ),V(τ+1)), update θ(τ+1) via random walk M-H chain

2.1 Simulate

θ̃ ∼ q(θ̃|θ(τ)) =

 A−1 for θ̃ ∈ θ(τ) ± a

0 otherwise,

where a is a vector of the same dimension as θ and A is the volume of the box

spanned by θ
(τ)
i ± ai. As q(·|·) is a random-walk proposal density, it is also sym-

metric: q(θ̃|θ(τ)) = q(θ(τ)|θ̃).

2.2 Take

θ(τ+1) =

{
θ(τ) with probability 1− ρ,
θ̃ with probability ρ,
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where

ρ = 1 ∧ f2(θ̃|V(τ+1), λ(τ), µ,p,X,Z, α)

f2(θ(τ)|V(τ+1), λ(τ), µ,p,X,Z, α)

= 1 ∧ ΠT
t=1f1(V

(τ+1)
t |θ̃, λ(τ), µt,pt,Xt,Zt, αt)π(θ̃)

ΠT
t=1f1(V

(τ+1)
t |θ(τ), λ(τ), µt,pt,Xt,Zt, αt)π(θ(τ))

= 1 ∧ ΠT
t=1L1(pt|V(τ+1)

t , θ̃, λ(τ), µt,Xt,Zt, αt)f(V
(τ+1)
t |θ̃,Xt,Zt)

ΠT
t=1L1(pt|V(τ+1)

t , θ(τ), λ(τ), µt,Xt,Zt, αt)f(V
(τ+1)
t |θ(τ),Xt,Zt)

π(θ̃)

π(θ(τ))

Because L1 only depends on (Vt, αt, λ) and by construction V
(τ+1)
t ∈ GSP, the

above equation can be further simplified:

= 1 ∧
ΠT
t=1

[
ΠN
i=1Π

N
j=1

1
σ̃
φ
(
V

(τ+1)
ijt −δ(Xit,Zjt;β̃)

σ̃

)]
ΠT
t=1

[
ΠN
i=1Π

N
j=1

1
σ(τ)φ

(
V

(τ+1)
ijt −δ(Xit,Zjt;β(τ))

σ(τ)

)]ΠT
t=1c(θ

(τ); Xt,Zt)

ΠT
t=1c(θ̃; Xt,Zt)

π(θ̃)

π(θ(τ))

This step is nothing but treating V(τ+1) as the data, and then evaluate the likelihood

ratio of the truncated normal density.

3. Conditional on (θ(τ+1), λ(τ),V(τ+1)), update λ(τ+1) via random walk M-H chain

3.1 Simulate

λ̃ ∼ q(λ̃|λ(τ)) =

 A−1 for λ̃ ∈ λ(τ) ± a

0 otherwise,

where a is a vector of the same dimension as λ and A is the volume of the box

spanned by λ
(τ)
i ± ai.

3.2 Take

λ(τ+1) =

{
λ(τ) with probability 1− ρ,
λ̃ with probability ρ,

where

ρ = 1 ∧ f3(λ̃|θτ+1,Vτ+1, µ,p,X,Z, α)

f3(λτ |θτ+1,Vτ+1, µ,p,X,Z, α)

= 1 ∧ ΠT
t=1L1(pt|P(Vτ+1

t , αt), λ̃, µt)

ΠT
t=1L1(pt|P(Vτ+1

t , αt), λτ , µt)
.

Under uniform equilibrium selection, there is no need to perform step 3.
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A.3 Other Implementation Details

A.3.1 Characterizing the set of equilibrium prices

As discussed in section 3.1 above, the set of equilibrium per-click prices is a convex

polyhedron defined by various linear inequalities. First, we consider the no-blocking pair

conditions in Eq. (1). one can substitute ui + ti = Vii∀i into the rest of NBP conditions

conditions: The resulting system of inequalities are

Vii − Vij ≥ ti − tj ≥ Vji − Vjj. (8)

Equivalently, equation (8) can be re-written using the matrix notation

{p|A1p ≤ b1}.

Take a 3-by-3 case as an example,

A1 =



α1 −α2 0

−α1 α2 0

α1 0 −α3

−α1 0 α3

0 α2 −α3

0 −α2 α3


, and b1 =



V11 − V12
V22 − V21
V11 − V13
V33 − V31
V22 − V23
V33 − V32


. (9)

The second set of inequalities are the individual rationality conditions; i.e., bidders’

payoff should be positive

{p|A2p ≤ b2},

where A2 is the diagonal matrix with (α1, α2, . . . , αN) on the main diagonal and b2 =

(V11, V22, . . . , VNN)
′
. Finally, the last set of inequalities states that p1 > p2 > · · · >

pN ≤ 0, corresponding to the non-negative price systems that are consistent with the

generalized second price auction.

{p|A4p ≤ b4},

For a 3-by-3 case,

A3 =

[
−1 1 0

0 −1 1

]
, and b3 =

[
0

0

]
. (10)
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along with the nonegativity constraints

{p|A4p ≤ b4},

where A4 = −IN×N and b4 = −01N×1.

vThe set of equilibrium prices is given by P(V, α) = {p|A(α)p ≤ b(V)}, where

A = (A
′
1|A

′
2|A

′
3|A

′
4)
′

and b = (b
′
1|b
′
2|b
′
3|b
′
4)
′
.

A.3.2 Parameter Setup

For the first specification of bidder valuations (Model I), the prior for β is assume to

be joint normal distribution. The mean vector β0 equals to the zero vector, and the

covariance matrix B0 equals to 100000I, where I is an 12-by-12 identify matrix. The prior

for σ2 is assumed to be inverted Gamma distribution with shape parameter α0 = 2 and

scale parameter δ0 = 5. We choose the uniform distribution on the half-line as the prior

for the shape parameters (γ1, γ2) of the beta distribution when estimating the equilibrium

selection density. This set of prior values only impose minimum prior information on

the parameters. For example, when the shape parameter is 2, the variance of inverted

Gamma distribution does not exist. Moreover, given the “large sample” feature in the

Bayesian updating step for (β, σ),33the prior specification only plays a negligible role in

determining the posterior. We make 30,000 draws and the first 10,000 draws are treated

as the burn-in. We then keep every 50th draw of the remaining 20,000 draws to estimate

the posterior mean and standard deviations. The radius for the random walk proposal

for β, σ2, and (γ1, γ2) are respectively 100, 1000 and 0.2.

For Model II, the prior for β is assume to be joint normal distribution. The mean

vector β0 equals to the zero vector, and the covariance matrix B0 equals to 100000I,

where I is an 44-by-44 identify matrix. We make 50,000 draws and the first 30,000 draws

are treated as the burn-in. We then keep every 50th draw of the remaining 20,000 draws

to estimate the posterior mean and standard deviations. The radius for the random walk

proposal for β, σ2, and (γ1, γ2) are respectively 5, 100 and 0.2.

A.3.3 Calculating the Volume of Equilibrium Polytope of Prices

In order to evaluate the likelihood, one has to compute the volume of P(V, α) if uniform

selection is imposed. We do it via simulation: first, we draw 1000 independent (multi-

variate) uniform random numbers from the smallest bounding box of P(V, α). Second,

33In a 5-player-5-position game, 25 Vij will be drawn in MCMC. If there are 100 keyword auctions,

(β, σ2) will be estimated by 2500 simulated Vij .
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the volume of P(V, α) is approximately the volume of the bounding box times the pro-

portion of the previous draws that belong to P(V, α). If beta selection is imposed, one

instead draw beta random numbers from the bounding box. We also try 5000 draws and

the accuracy seems to be similar.

A.3.4 Calculating the Truncation Probability c(θ; Xt,Zt)

We use a simulation-extrapolation strategy to compute the truncation probability, as

we find that c(θ; Xt,Zt) is a relatively smooth function of θ. Given θ, and for each

keyword auction t we can simulate N valuation matrices Vi to approximate c(θ; Xt,Zt)

by 1
N

∑N
i=1 1(Vi ∈ GSP). This step would require solving (DP). We first make 10,000

MCMC draws by ignoring this truncation probability. The first 1000 draws are discarded,

and we keep every 10th draw of the remaining chain. We simulate c(θj; Xt,Zt) under

these simulated θj, j = 1, 2, . . . , 900. Finally, we regress c(θj; Xt,Zt) on θj using beta

regression34, with the logistic function being the link function. The estimated regression

coefficients are then used to calculate c(θ; Xt,Zt) in MCMC. One important fact is that if

Vi 6∈ GSP, then a+ bVi 6∈ GSP, where (a, b) are some scalar constants. It is the relative

size of each component within V that leads to nonexistence of equilibrium, not because of

its scale. As a result, the scale parameter and the non-interacted location parameters (see

Appendix B) does not affect c(θ; Xt,Zt). When running the regression, we discard the

non-interacted location parameters, and normalized the interacted location parameters

by the scale parameter σ.

Appendix B Identification

The specification of the latent valuation Vij implicitly assumes that the distribution of Vij

belongs to the location-scale family. However, the meaning of location and scale should

be carefully interpreted in matching models, as location parameter for Vij may actually

possess scale effect on the dependent variable p.

There are three types of parameters in the specification of Vij: interacted location

parameter (β4, . . . , β11), non-interacted location parameter (β0, . . . , β3) and scale param-

eter σ. First, the interacted location parameters characterize the preference over position

ranks. Or equivalently, they characterize the complementarity between quality and ranks,

and hence will determine the (cross-sectional) distribution of allocation. They are also

related to the price distribution through the channel of the no-blocking-pair conditions,

34Beta regression is a flexible regression model to handel the cases when the dependent variable is

proportion.

45



because they essentially determine the shape of the equilibrium polytope of price. The

point identification results for the interacted location parameters (up to scale normaliza-

tion) from the allocation data µ have been established in Choo-Siow model and Fox (2010)

under different model assumptions.

The price data essentially provides identification power for parameters with scale

effect on the valuation matrix. There are two types of such parameters: First, the

non-interacted location parameters cannot be identified through the no-blocking-pair

conditions, as they are differenced out. Instead, the individual rationality condition can

be used to learn information about them. Such parameters do not affect the preference

over ranks, and consequently they have no effect on the allocation. However, as they

would shift the scale of the valuation matrix, they will also shift the size of the equilibrium

polytope of prices. Similarly, the scale parameter σ have no effect on the allocation, but

it will also affect the size of the equilibrium polytope of price. Both non-interacted

location and scale parameters have scale effect on the price distribution. The difference

is, the non-interacted location parameters only shift the size of the equilibrium polytope

in certain directions (through individual rationality), while the scale parameter shift the

size of the equilibrium polytope in all directions. By looking at the price distribution,

and the shape/size of the support of prices one can then learn information about these

parameters. The intuition is simple: if on average the price is $5, the scale of V cannot

be around $1, as it would violate the individual rationality. On the other hand, it cannot

be around $100, as $5 would be too cheap under competitive bidding.

Remark: a partial identification approach. It is possible to derive a bound

for the structural parameters in terms of bounds of CDF (similarly to Haile and Tamer,

2003).

Theorem 1. Suppose the econometrician observes T independent auctions indexed by

t = 1, 2, . . . , T . Let F (p|X,Z, α) represents the conditional distribution of observed per-

click prices. We denote by B(X,Z, α, εij; θ), the smallest (random) bounding box that

covers P(V, α) = P(X,Z, α, εij; θ). B(X,Z, α, εij; θ) = ΠN
i=1[pil, piu], where (pil, piu) are

respectively the smallest and largest elements of the i-th coordinate of P. Define two

random vectors

p̄ = max B(X,Z, α, εij; θ) = (p1u, p2u, . . . , pNu) and p = min B(X,Z, α, εij; θ) = (p1l, p2l, . . . , pNl).

The identified set of θ is given by

Θ0 =
{
θ|F (p|X,Z, α; θ) ≥ F (p|X,Z, α) ≥ F (p̄|X,Z, α; θ)

}
,

Proof. Conditional on (X,Z), the (joint) distribution function of p, F (p|X,Z), is
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identified by the sampling process. Given (X,Z, α, εij; θ), p is a measurable selection

from the set of stable prices P. By construction, p ≤ p ≤ p̄, for almost-all εij, where the

inequality are defined componentwise. This implies that the distributions of p, p, and p̄

are ordered in the sense of first-order stochastic dominance, which immediately implies

the bound on CDF.

Although the bound approach is appealing as it does not require an equilibrium selection

assumption, it is extremely computationally demanding to compute such bound since

for each draw of latent valuation matrix, one has to solve (DP).35 By contrast, as we

discussed earlier, the Bayesian approach does not require solving for game for each draw

of the latent valuations, and hence is computatinoally more appealing. See also Uetake

and Watanabe (2012) for a bounds approach for estimating a two-sided matching model

applied to bank mergers.

Appendix C Complete details of counterfactual

simulation

To solve for the set of SNE in the WGSPA, we consider each possible allocation in turn;

for each candidate allocation, we use the inequalities characterizing WGSPA to determine

the set of equilibrium bids (which may be empty if this candidate allocation is not an

equilibrium), and then repeat this routine for all possible allocations. Consequently, the

problem of solving SNE of WGSPA is combinatorial. Parallel to the standard GSPA,

the above inequalities can be written as matrix form. The set of equilibrium bid under

allocation µ will be referred as Bµ ≡ {b|Dµ(α, κ)b ≤ cµ(V)}.

We then simulate the structural parameters θ from the posterior distribution (by

directly using the MCMC output), and for each θ we draw the utility shocks εijt to

obtain the valuation matrix Vt. Given Vt one can solve the game to obtain equilibrium

per-click prices. As the number of SNE may be huge, we do not attempt to solve all

SNE. Instead, we employ a simple routine to perform the counterfactual analysis. As

long as an equilibrium allocation is found, we then stop searching for another equilibrium

allocation36 and simulate bi from the equilibrium polyhedron of bids Bµ
37 according to

35Using the approach of Chernozhukov et al. (2007), the total number of times which the game must

be solvedgame solving is at least equal to the numberθ times the number of keyword auctions (= 487)

times the number of V draws. Moreover, depending on c(θ;Xt,Zt), one has to discard many V draws

that do not satisfy the GSPA restriction.
36To avoid the concentration on a particular type of allocation, we perform random search.
37There is no need to simulate the maximum bid b1 for the following two reasons: First, the per-click
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uniform distribution or the estimated beta distribution. Finally, we apply the scored

pricing rule in Eq. (13) to obtain the per-click price p̃t.

prices are irrelevant of b1. Second, if (b2, . . . , bN+1) satisfy all the inequalities, one can always choose b1

large enough to meet the allocation rule.
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