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Abstract 
 

The Fama-Macbeth (1973) rolling-β method is widely used for estimating risk premiums, 
but its inherent errors-in-variables bias remains an unresolved problem, particularly when 
using individual assets or macroeconomic factors. We propose a solution with a particular 
instrumental variable, β calculated from alternate observations. The resulting estimators 
are unbiased. In simulations, we compare this new approach with several existing methods. 
The new approach corrects the bias even when the sample period is limited. Moreover, our 
proposed standard errors are unbiased, and lead to correct rejection size in finite samples.  
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1  Introduction 
 
The methods introduced by Black, Jensen and Scholes (1972), (BJS), and refined by Fama 
and Macbeth (1973), (FM), are widely employed to estimate risk premiums in linear factor 
models. This approach involves two-pass regressions: the first pass is a time series 
regression of returns on the factors for each asset, which produces estimates of factor 
loadings, widely called “betas” in the finance literature. The second pass regresses asset 
returns cross-sectionally on the estimated betas. As pointed out initially by Black, Jensen 
and Scholes (1972), risk premiums estimates from the second pass cross-sectional 
regression contain an inherent errors-in-variables bias because of estimation errors in the 
betas from the first pass. 
 
Given the luxury of a large number N of individual assets, one can form diversified 
portfolios organized by particular asset characteristics. Black, Jensen and Scholes (1972), 
Blume and Friend (1973), and Fama and Macbeth (1973) show that this portfolio approach 
reduces estimation errors in the betas because they are less affected by idiosyncratic risk; 
so the errors-in-variables bias is mitigated (and eliminated in the limit N∞).  
 
Athough the finite sample properties of the portfolio grouping procedure are weak even 
when N is reasonably large (N>2000), many papers still employ FM with portfolios to 
estimate risk premiums. But more troubling is portfolio diversification can mask effects 
that exist in individual assets. Taking a naïve example, many investors seem to believe that 
some assets are overpriced and others are underpriced, but any portfolio grouping by an 
attribute other than price itself could diversify away the mispricing, rendering it 
undetectable.  
 
A more egregious defect from portfolio masking involves the cross-sectional relation 
between mean returns and factor exposures (“betas”.)  Take the single-factor CAPM as 
an illustration (though the same effect is at work for any linear factor model.)  The cross-
sectional relation between expected returns and betas holds exactly if and only if the market 
index used for computing betas is on the mean/variance frontier of the individual asset 
universe. Errors from the beta/return line, either positive or negative, imply that the index 
is not on the frontier. But if the individual assets are grouped into portfolios sorted by 
portfolio beta and the individual errors are not related to beta, the analogous line fitted to 
portfolio means and betas will display much smaller errors. This could lead to a mistaken 
inference that the index is on the efficient frontier. 
 
This paper contributes to the literature by proposing a method to reduce the bias in risk 
premium estimates without relying on portfolio grouping. We also provide simulations to 
gauge the magnitude of the bias in finite samples and to compare our new method with 
previous approaches. 
 
To put the problem into perspective, we show using macro factors with a large number of 
assets (N≈5000) and sample periods (T≈600), that the risk premium bias can be 60 to 70% 
with BJS and up to 90% with FM. Similar biases are present when using individual assets 
rather than portfolios. The method introduced in this paper can virtually eliminate the bias 
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in either case. 
 
Our method builds on the FM rolling-β method and the techniques introduced in Griliches 
and Hausman (1986) and Biorn (2000). In the first pass, β’s are estimated from two sets of 
non-overlapping observations. Then the β’s from one set are used as instruments for the 
β’s from the second set in the second pass estimation. The asymptotic distribution of the 
estimated risk premiums is derived using Shanken’s (1992) method. 
 
We use simulations to evaluate hypothesis tests involving estimated risk premiums, which 
typically boil down to a null hypothesis that the intercept in the second pass regression is 
zero. Simulation results suggest that with the exception of our instrumental variables 
approach and the covariance from Theorem 3.2 below, all other methods reject a true 
hypothesis too often. This high rejection rate is due to a downward bias in estimated 
standard errors and an upward bias in the second pass intercept. 
 
We also apply the new approach as well as the classical approaches to estimating the risk 
premiums for the macroeconomic factors. With our method, the consumption growth has 
positive significant effect on the stock returns. However, all other methods do not lead to 
the same or consistent conclusion. 
 
This paper contributes to a large literature about the errors-in-varibles bias. As the length 
of the sample period (T) grows indefinitely, Shanken (1992) shows that the errors-in-
variables bias becomes negligible because the estimated beta errors are small. Shanken also 
derives an asymptotic adjustment for the standard errors. Jagannathan and Wang (1998) 
extend this asymptotic result to the case of conditionally heterogeneous errors in the time 
series regression. Kan, Robbotti and Shanken (2012) and Shanken and Zhou (2007) extend 
the result to a misspecified model. Chen and Kan (2004) investigate the finite sample 
properties of the cross-sectional regression, and find that the bias can be material even if T 
is reasonably large (T=600), when using macroeconomic factors such as consumption 
growth. 
 
The two papers most closely related to this paper are Kim (1995) and Gagliardini, Ossola 
and Scaillet (2011). Kim (1995) corrects the errors-in-variable bias using lagged β as an 
instrument to derive a closed-form solution for the MLE estimator of the risk premiums 
under the assumption that the error terms are homogeneous. The solution proposed by Kim 
(1995) is based on Theil’s adjustment (Theil (1971), (Cf. Litzenberger and Ramaswamy 
(1979), and Shanken (1992)). Theil's adjustment can mitigate errors-in-variables bias when 
the cross-sectional residuals are weakly dependent and the number of assets is large. Its 
limitation depends on an estimate of the standard error of the regression residuals, which 
can introduce new biases. Since our method uses instrumental variables to estimate risk 
premiums directly via the second pass regression, it is not subject to the same difficulty. 
 
Gagliardini, Ossola and Scaillet (2011) show that when T and N are close to each other and 
both converge to infinity, the errors-in-variables bias in the estimated risk premiums in the 
BJS method converges to zero. Following their method, this paper derives asymptotic 
distributions by assuming that bothT and N go to infinity. However, with the macro-factor 
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model, even when both T and N are large, the simulations suggest that the estimator from 
our IV β method has a much smaller bias than the BJS method because the convergence 
rate for estimated risk premiums is slower in the BJS method than in the IV method. 
 

 
2.The Instrumental Variable Approach 
 
Let tr  denote the 1×N row vector of excess returns on N assets in period t1, tf  denote 
the 1×K vector of factor realizations, tβ  denote the K×N matrix of factor exposures, and 

tε  denote the 1×N column vector of idiosyncratic return disturbances. For convenience 
and without loss of generalization, it is customary to assume that the factors and 
disturbances have means of zero, 0εf == )(E)(E tt . Consequently, the system in period 
t can be expressed as 
 ttttt )(E εβfrr ++= . (2.1) 
 
The no arbitrage condition of the Arbitrage Pricing Theory (APT) (Ross [1976]) stipulates 

 ttt )(E βγr = . (2.2) 
 
where tγ  is a 1×K vector of risk premiums associated with the factors. Since 2.1 and 2.2 
hold in every period, over a sample of T periods, t=1,…,T, the vectors stacked alongside 
each other become ]',[ T1 rrR = , ]',[ T1 εεΩ = , and ]',[ TT11 βfβfFB ≡ , so that the 
overall sample can be expressed compactly as 
 
 ΩFBRR ++= )(E , (2.1a) 
 
and, similarly, defining ]',[ TT11 βγβγΓB ≡ , 
 
 ΓBR =)(E . (2.2a) 
 
If the factor exposures and risk premiums are time invariant, the system is simplified; i.e, 
for T1 βββ ==≡   and T1 γγγ ==≡  combining 2.1a and 2.2a, we have 
 
 ΩβγfγfR +++= )]'(),[( T1  , (2.1b) 
 
Expression 2.1b represents a set of seemingly unrelated regressions that can be used in 
principle to test the APT’s no arbitrage condition or estimate the risk premiums. If β  is 
known, 2.1b becomes a cross-sectional regression for estimating the risk premiums because 

0f =)(E t . If the factors are known, (or assumed to be known), 2.1b becomes a time series 
regression for estimating β . 
 
In each regression, the intercept must be zero if there is no arbitrage. In a time series 

1Matrices and Vectors are indicated by bold face italic 
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regression, the sample means of the factors are estimates of the risk premiums if the factors 
are traded portfolios or indexes with market returns. See Gibbons, Ross and Shanken 
(1989). However, if the factors are not traded assets, (e.g., if they are macroeconomic 
variables) sample means of the factors are not necessarily mean returns.  Also, if a joint 
test of the individual intercepts rejects the hypothesis that they are all zero, the accuracy of 
estimated risk premiums is called into question. 
 
Another method to test Equation 2.1b is to use GMM or MLE (e.g. Gibbons (1982) and 
Stambaugh (1982)). However, the numbers of parameters, moment conditions and the 
nonlinear estimation make these methods hard to implement when N is large (See the 
subsection on GMM below). 
 
A third method, based on Black, Jensen and Scholes (1972) and Fama and Macbeth (1973), 
uses the two-pass regression approach mentioned earlier. The first pass relates returns of 
each asset to pre-specified factors in a time-series regression, thereby calculating estimates 
of β . The second pass is a cross-sectional regression of returns on the β  estimates from 
the first pass. This can be done repeatedly for a time series of cross-sections; then the time 
series means of the cross-sectional coefficients in the second pass are estimates of the risk 
premiums. 
 
The second pass cross-sectional regression is inherently subject to errors-in-variables bias 
because its explanatory variables are estimates from the first pass. These errors  introduce 
bias in the estimated risk premiums, the coefficients in the second pass. In addition, the 
error-induced noise can affect the estimated sampling variance of the risk premiums. 
Heretofore, applications of BJS and FM, including the original contributions, use portfolio 
groupings to mitigate these problems. We propose a procedure that can be implemented 
with individual assets; no portfolios are required. 

 
We rely on two major assumptions: 
 
Assumption 1: tε  is independent and identically distributed and is independent of tβ and 

tf . The covariance metrics of tε  and tf  are Σ and FΣ , respectively. 
 

Assumption 2: tf and tβ  are stationary processes and are independent of each other.  
 
Under Assumption 1, the estimated factor loadings are asymptotically consistent in the first 
pass regression though they are not “admissible” in the James/Stein sense (for example, 
Stein (1956) and James and Stein (1961)) for finite samples. Moreover, the i.i.d assumption 
simplifies the asymptotic standard errors for the estimated risk premium. However, as we 
show below, the consistency of these estimators do not require the identical distribution of 
errors. 
 
Assumption 2 allows us to derive the unconditional asymptotic distribution of the estimated 
risk premiums. 
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Suppose the length of the FM rolling window is τ and tF is the transpose of the submatrix 
consisting of columns t-τ+1 to t of the factor observations; i.e., ]',[ t1τtt ffF +−≡ . 
Similarly, let tR  and tΩ designate the corresponding columns of R  and Ω . The first 
pass time series regression produces the estimates 

 
 ( ) tt

1
ttt ''ˆ RFFFβ −=  

 
With a total sample size of T, there are T-τ sequential overlapping rolling windows of size 
τ.2 
 
The estimation error in the first pass is ( ) tt

1
tttt ''ˆ ΩFFFββ −=− , which depends only on 

the error terms from time t-τ+1 to t (under assumption #1.) 
 
The dependent variable in the second pass cross-sectional regression could be any return 
vector rs for a disjoint period s ∉ [t-τ+1 t], though it is often simply t+1. This regression 
can be written stNs ˆˆα̂ ξγβ1r ++= where α is a common intercept and 1N is a unit vector of 
length N. Since the true model is sss )( εγfβr ++= , the cross-sectional residuals are

ssts ))(ˆ( εγfββξ ++−=  and hence are correlated with the explanatory variables, the β̂ ’s. 
This induces a complicated bias in the expected values of γ̂  and α̂ ; under the APT no 
arbitrage condition, the true value of α  is 0. 
 
The bias is less severe when the estimation of β  is more precise. Assuming that the true 
value of β  is time invariate, one way to improve precision is to make τ large when T is 
large. Asymptotically, there is ever smaller measurement error in the first stage estimates 
and hence little bias in the second stage.  

 
When the number of assets is large, i.e, when N∞ with a fixed rolling window (the time 
series sample period could be large), the errors-in-variables bias could still be substantial. 
Instrumental variables (IV) corrects the first stage bias, but as always with the IV approach, 
the choice of instruments is crucial.  In this case, however, there are some natural 
candidates; viz., β̂  estimated from sample observations that are non-contiguous with the 
sample ending at t. These could be lagged observations. For example, if the original β̂ ’s 
are estimated with τ observations ending at observation 2τ, the instruments could be β̂ ’s 
estimated with the τ observations from 1 to τ. Specifically, if we define ]ˆ,1[1ˆ tt ββ ≡ , the 
OLS estimator is: 

 
 )'1ˆ()'1ˆ1ˆ(='ˆ τtt

1
τttτt +

−
++ rβββγ , 

2Previous work typically uses sequential and equal-length rolling windows but there is no mathematical 
necessity for such a procedure and we shall suggest a different approach below. 
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Similarly, the GLS estimator is: 
)'1ˆ()'1ˆ1ˆ(='ˆ τt

1
t

1
τt

1
tτt +

−−
+

−
+ rΣββΣβγ . 

Of course, any other non-overlapping observations could be employed including 
subsequent ones. 
 
The IV method requires that strong instruments are highly correlated with the true 
explanatory variables and are uncorrelated with the residuals. Since most asset returns are 
weakly correlated over time, residuals from factor regressions are virtually uncorrelated as 
well. This satisfies the second condition for strong instruments. The first condition is 
trivially satisfied if the true betas are time invariate provided that the estimation samples 
are sufficiently long. In such a circumstance, factor exposure estimates from non-
contiguous samples will be strongly related. On the other hand, if there is some time 
variation in the true β ’s, samples from non-contiguous observations widely separated in 
time bring the risk of weakened instruments. We have a suggestion next to counteract this 
possibility. 
 
 
2.3 An improved IV method for risk premium estimation. 
 
The IV method is not limited to lagged instruments. Any estimated factor loadings using 
non-overlapping observations can be used as the instruments. But the instruments could be 
weak if the factor exposures are changing over time and the non-overlapping samples are 
relatively far apart.   
 
This suggests a procedure that uses non-contiguous samples constructed to be the most 
coincidental possible in calendar time. Here is one proposed scheme: For each asset, divide 
the total sample into three subsamples. The first subsample contains returns and factors for 
observations 1, 4, 7,…, T-3. The second subsample contains returns and factors for 
observations 2, 5,…, T-2, and the third subsample contains returns and factors for 
observations 3, 6,…T.  
 
Given that factor model residuals are uncorrelated across time, any of the three subsamples 
can be used to estimate factor loadings ( β̂ ’s), while either of the other two subsamples can 
be used to estimate instruments for the loadings. Then, the second stage FM cross-sectional 
regression can be estimated for each observation in the third subsample without having the 
returns related in any way to the errors in the β̂ ’s or in their instruments. The sample 
means of the cross-sectional coefficients then become unbiased estimated of risk premiums. 
Since any permutation of the three subsamples is equally suitable, all three could be used 
and there seems to be nothing wrong with averaging the cross-sectional coefficients over 
all three permutations. 
 
To be more specific, if we define ]ˆ,1[1ˆ samplesample ββ ≡ , where sample can be one of the first, 
second or third subsamples, the OLS estimator is: 
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 )'1ˆ()'1ˆ1ˆ(='ˆ thirdfirst
1

secondfirst rβββγ − , 
Similarly, the GLS estimator is: 

)'1ˆ()'1ˆ1ˆ(='ˆ third
1

first
1

second
1

first rΣββΣβγ −−− .  

thirdr  represents the sample average of the stock returns over the third subsample. In fact, 

since the returns from both second and third subsample are uncorrelated with first1β̂ , we 
can replace thirdr  with dsecondthirr (obtained by taking the average over both of these two 
subsamples) in the estimator. This estimator is consistent when the number of stocks N is 
large. This will be the 3-group estimator in our simulation and empirical sections. 
 
There is an advantage of using three-group method. Since slow variation in the true factor 
loadings would evolve over the entire sample, each sub-sample would roughly include the 
same variation, thereby strengthening the instruments relative to using, say, lagged or 
leading non-contiguous observations. 
 
Finally, we note that it might not be optimal to divide up the sub-samples equally. 
Depending on the volatility of factors and factor model residuals, one could imagine 
improvements based on unequal divisions; e.g., estimating the loadings and instruments 
with half of the available observations and conducting the cross-sectional regressions with 
the other half. We reserve this refinement for later study though and stick here to a tri-
partite procedure. 
 
 
2.4 Theil’s Adjustment 

 
To compare, we now discuss two other methods to correct the bias. The first method 

is Theil’s adjustment, which essentially modifies the BJS method.  
 
In BJS method, when the second pass is OLS (the method is similar when the 

second pass is GLS), the estimated risk premium is  
 
 )'1ˆ()1ˆ'1ˆ( 1 rβββγ −= , 

where ∑
=

=
T

1t
tT

1 rr  is the average of the returns and ]ˆ,[1ˆ N1 β1β ×= . We can show that,  

 ANN
Tββββ += 1'111ˆ'1ˆ1  

with 




































= −−

×

×

∑

∑
1

2
iT

2
i1

1
1k

k1

))(
δ

0δ
'()'(

0

FF'FFFF0

0

TA






, where ∑ 2

itδ  is 

the summation of the variances of the regression residuals ]ε,,ε[ tNt1t =ε . The term AT  
represents the covariance of the error term in the estimated factor loadings. Since AT  is 
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positive semi-definite, 1'1
N
11ˆ'1ˆ

N
1 ββββ > . This leads to a negative bias for the estimated 

risk premium. In order to correct this bias, Theil (1971) and Litzenberger and Ramaswamy 
(1979) suggest the following method: 

 )'1ˆ()ˆN1ˆ'1ˆ( 1 rβTββγ −−= A , 
 

with 




































= −−

×

×

∑

∑
1

2
iT

2
i1

1
1k

k1

))(
δ̂

0δ̂
'()'(

0

ˆ
FF'FFFF0

0

T






A , where ∑ 2

itδ̂  is 

the summation of the estimated variances of the regression residuals. 
 

Shanken (1992) shows that this estimator is consistent when N is large under the 
assumption that the summation of the estimated variances of the regression residuals 
converges to its true value with large number of stocks. In Section 5, we also find that the 
finite sample bias is small with Theil’s adjustment when this assumption is valid. 
 
However, the above assumption may not always be true. For example, suppose that the 
summation of the variances of the regression residuals ∑ 2

itδ  is time-varying, but we 
estimate it by summing of the average variance of all regression residuals for all time, i.e. 

/Tδ̂δ̂
NT,

11.it

2
it

2
it ∑∑

==

= , then, )δδ̂( 2
it

2
it −∑  does not converge to zero since the true value 

∑ 2
itδ  is time varying and the estimator ∑ 2

itδ̂  is constant. In this scenario, if 

)δδ̂( 2
it

2
it −∑  is correlated with the factors, then  

0

FF'FFFF0

0
TT

≠





































−

−

=−

−−
×

×

∑

∑
1

2
iT

2
iT

2
i1

2
i1

1
1k

k1

))(
)δδ̂(

0)δδ̂(
'()'(

0

E

)ˆ(E







AA

. 

Therefore, the Theil’s estimator can create a new bias when estimated variances of the 
residuals do not converge to the true variances. Such issue will not affect the instrumental 
variable method since the only assumption for this method is that the residuals are not auto 
correlated. 
 
There is another issue associated with the Thiel's adjustment in estimating the standard 
errors of the regression residues∑ 2

itδ , when the factor loading β  is time varying. 
Specifically, if T21 ,, βββ   are not identical, the estimated variance is 
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( ) ( ) ( )∑∑
=

−−

=

− −−+=−=
T

1t

21
t

1
tttt

T

1t

21
t

2
t )'')(''(

T
1)''(

T
1 εFFFfFBFFFfεβfRFFFfRδ t

.  
 

Here



















=

TT

22

11

βf

βf
βf

FB


. The above equation can be further decomposed into

( ) ( )

( ) ( )∑

∑∑

=

−−

=

−

=

−

−−+

−+−

T

1t

1
ttt

1
tt

T

1t

21
ttt

T

1t

21
tt

))('')(''(
T
1

))(''(
T
1)''(

T
1

FBFFFffβεFFFfε

FBFFFfβfεFFFfε
. The first part of the 

decomposition is a consistent estimator of the variance of the regression residues. 
Moreover, when the regression residues are uncorrelated with the factors and the loadings, 
the expected value of the third part is zero. However, the second part is a function of tβ , 

and its expected value is not zero when the factor loadings are time-varying. Thus, the 
estimated errors contain a bias, and the bias can affect the estimated risk premiums. The 
time-varying factor loadings do not create such an issue for the instrumental variable 
approach since there is no need to estimate the standard errors of the regression residues. 
 

 
2.5 GMM 
 
Following equation (12.23) of Cochrane (2005), one can use the following moment 
conditions in GMM estimation:  
 

 ,0=))('( FBαrF −−E  
 

 .0=)( ΓBr −E  
 

For N assets, there are N(K+1)+N moment conditions and NK+N+K parameters. Hence, 
the GMM is overidentified if N>K. 
 
However, there are two limitations in implementing GMM. First, the method cannot be 
easily estimated when N is even moderately large. Suppose N=149 and K=3 (3-factor 
model), then there are 745 moment conditions and 599 parameters to estimate, and it 
becomes problematic to find the global minimal of the objective function with 599 
parameters and 745 moment conditions. If N=5000 (as for individual stocks), then there 
are N(K+1)+N=25000 moment conditions. Hence, T must be more than 25000. Usually, 
we do not have data with such a large T, hence, the GMM is not implementable. 
 
Another problem is the efficiency of the estimator. In an iterated GMM process, it is 
difficult to construct the efficient weighting matrix of the moment conditions that is 
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invertible based on the estimated parameters in previous iteration. Even when N=25 (the 
weighting matrix is 125125× ), we can only use the identity matrix as a weighting matrix. 
However, using the identity matrix will not be efficient for the estimated parameters.  
 
To deal with these two limitations, Shanken and Zhou (2007) make an adjustment to this 
method. First, they estimate β  with the time series regression. Second, they use the 
estimated β  to form the moment condition. In this case, there are only k  parameters 
remaining in the second pass of their two-pass GMM. This adjusted method is essentially 
similar to the BJS method with the GLS estimation in the second pass. 

 
 
3.Asymptotic Distributions 
 
3.1  The asymptotic distribution of the β IV method. 
 
In this section, we show the consistency of the estimator and obtain its asymptotic 
distribution. 

 
Theorem 3.1 (a) The estimated risk premiums ),('ˆ tt ′− f0γ (rolling-β IV estimator) and 

),('ˆ dsecondthir ′− f0γ (3-group β IV estimator) are consistent.  
     (b) Assume that when N∞, N/11 1 ′− βΣβ  converges to an invertible 

matrix (denote this matrix by '1bbΣ − ). In addition, assume that ]ξβ,,ξβ[ tN
1
Nt1

1
1   (where 

11
N

1
1 1=]β,,β[ −Σβ ) satisfies a Lindeberg condition, then the asympotic distribution for 

the estimated risk premiums using the lagged IV (rolling-β IV) is:  
 
 ,)(0,)),('ˆ(N 11

tt
−−→′+− BAAfγ0γ N   

 
where '= 1bbΣ −A , ,))~'(= τt0,

1
0 −

− +LbbΣB c  where  

 















−

−−−−
−

−−×

×

−
1

τtτtτtττt
1

τtτ1k

k1

τt0, )'(')'(
0

=~ FFFLFFF0
0

L t  

  
and  

)')')((
τ

1τ2)()(')')((1= 0t
1

tttt
1

tttτt
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The asymptotic distribution for the estimated risk premiums using the 3-group IV method 
is: 
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assuming that subsample i contains iτ  periods. Moreover, dseocndthirf  is the average of the 
factors over the second and the third subsample. 

 
 

The proof is in the appendix.  
 
In cross-sectional regressions, the second pass can either be OLS or GLS. The Theorem 
presents the asymptotic distribution when the second pass is GLS. The OLS estimation is 
a special case (when IΣ ×2δ= ). 
 
Theorem 3.1 provides an estimation of the risk premiums conditional on the value of the 
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factors. The Theorem says that tγ̂  is a consistent estimator of the expected risk premium 
plus the unexpected factor realization at time t . If the factors are unexpected shocks or 
demeaned factors ( 0=)( fE ) , then )(0,'ˆ tt ′− fγ  is the consistent estimator of γ .  
 
One important assumption in this Theorem is  
 

 .'N/11 11 bbΣβΣβ −− →′  
 

A possible issue that arises in grouping can violate this assumption. If we group the 
individual stocks into well diversified portfolios according to characteristics of the firms, 
these portfolios may have market β close to 1.  Hence, N/11 1 ′− βΣβ  is not invertible, 
and one cannot use the rolling-β method with the instrumental variables. This situation is 
similar to the use less factor case in Kan and Zhang (1999) who show that the errors-in-
variables bias can be amplified in finite samples. There are several approaches to control 
this problem. One approach is to group the stocks according to market β as well; hence, 

N/11 1 ′− βΣβ  is invertible. Another method is to drop the constant term in the second pass. 
More specifically, in the second pass, one can regress returns on the β̂  on book-to-market 
and the β̂  on size without β̂  on market. This method implicitly assumes the multi-
factor model is true and the intercept is 0. A third approach is to use individual stock returns 
to estimate the risk premiums. When N is reasonably large, we will show that using 
instrumental variables from non-overlapping observations is effective in correcting the bias 
in finite sample. 
 
When the sample period T is large enough, the sample average of the estimated risk 

premiums using the lagged instrument, t
1τT

τ=t
ˆ

12τt
1 γ∑ +−

+−
 , is a consistent estimator. In 

the next Theorem, we provide the asymptotic distribution of the sample average of the 
estimated risk premiums. Notice that since the estimated time series }ˆ{ tγ  is 
autocorrelated up to τ , the asymptotic variance of the sample average of the estimated 
risk premiums contains these autocorrelations. 

 
Theorem 3.2  The sample average of the estimated risk premiums using rolling-β IV 
method is a consistent estimator of the risk premiums, i.e. when T is large,  

 .)(0,'ˆ
12τT

1
t

T

2τ=t

′→
+− ∑ γγ  

 
(a) If }{ tf  is a stationary process, the unconditional asymptotic distribution of the 

estimated risk premiums is: 
 

,)(0,))(0,))(0,ˆ(
12τT

1(NT tt

T

2τ=t
Vγfγ N→′−′−

+− ∑  
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 if )))~'(((= τtt1,
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+∑ LbbΣcEB  in which t1c ’s are constants and τtt1,

~
−L ’s are 

the 1)K(1)K( +×+  matrices3 exists,  
 ,= 11 −−

fff ABAV  

where '= 1bbΣAf
− . 

(b)  Excluding the term ,)(0, tf  we have the same asymptotic distribution of the 
estimated risk premiums as Theorem 2 in Shanken (1992): 

 )~(0,))(0,'ˆ
12τT

1(T t

T

2τ=t
FN Σγγ →′−

+− ∑ , where 







=

×

×

F
F Σ0

0
Σ

13

310~ . 

 
The proof of this Theorem is in the appendix. 
 
We will call V  the NT -asymptotic covariance and FΣ

~  the T -asymptotic 
covariance since they represent covariances with different convergent rates. Shanken (1992) 
derives the asymptotic distribution of the BJS method with convergent rate of T . 
Gagliardini, Ossola and Scaillet (2011) show that when both T and N large, the estimated 
risk premiums in the BJS method converge to the true value at the speed of 

)
NT
1O()

T
1O( + 4. If O(T)>N , then the rate of convergence is )

T
1O( . Theorem 3.2 

shows that if one uses the β IV method and subtracts the sample average 

'
12τT

1
t

T

2τ=t
f∑+−

 from 'ˆ
12τT

1
t

T

2τ=t
γ∑+−

, the rate of convergence for this estimator is 

)
NT
1O( . This method does not depend on the relative size of T and N.  

 
Notice that in the derivation of asymptotic distributions when the second pass is GLS, the 
covariance matrix of the error terms Σ  is assumed to be known. In reality, this matrix is 
unknown. Hence, one needs a feasible version to deal with this problem. One classical 
approach is to assume Σ  is some function of the factors, hence the estimation of the Σ  
becomes the estimation of the coefficients of these functions. 
 
There are two other methods implementing GLS. The first is introduced by Shanken (1985).  
If T>N+K, one can estimate Σ  by taking the sample average of the cross multiplication 
of the sample error terms that can be calculated through the estimation from the second 
pass OLS regression. Another method is that of Ferson and Harvey (1999) using weighted 
GLS. This paper adopts Ferson and Harvey (1999) since most of the cross-sectional 
correlations between the idiosyncratic risks are small. 
 
 

3 The formulas of τtt1,
~

−L  and t1c  will be defined in the proof. See appendix for the details. 
4Here, for any real number X, O(X) is defined as follows: there exist two positive numbers M and N, such 
that MX<O(X)<NX. 
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3.2  A simple way to calculate standard errors. 
 
In Theorem 3.2, we derive the asymptotic covariance of the estimated risk premiums. If 
the factors are demeaned factors or the factors are the shocks from its conditional expected 

values, then one can use ))(0,ˆ(
12τT

1
tt

T

2τ=t

′−
+− ∑ fγ  as the estimator of the 'γ , and V  

is the covariance matrix with NT -convergent rate. Fama and Macbeth also provide a 
simpler way to calculate the asymptotic covariance by taking the sample covariance of the 
estimated risk premiums. This method is also applicable with the β IV method. 
 

Define )(0,ˆ=ˆ tt
*
t fγγ −  and ))(0,ˆ(

12τT
1=ˆ tt

T

2τ=t
* fγγ −

+− ∑ . In this case, the Fama-

Macbeth sample asymptotic covariance (with autocovariances up to the length of the 
rolling window) in this situation is: 

 

 .)ˆˆ()ˆˆ(
1t12τT

1N **
t1t

**
t

T

t12τ=t

τ

τ=t1
γγγγ −′−

+−− −
+−
∑∑  

 
Another version of the Fama-Macbeth sample covariance does not contain the 
autocovariances i.e., one can use  

 )ˆˆ()ˆˆ(
12τT

1N **
t

**
t

T

2τ=t
γγγγ −′−

+−∑  

to estimate the covariance of the estimated risk premiums. In section 4, we will analyze 
different sample covariances as well as the asymptotic covariance from Theorem 3.2. The 
differences are small in the Fama-French three factor model, but can be large for the macro-
factor model. 
 

 
4  Data and Simulation Results 
 
This section uses Fama-French portfolios and macro factors to compare empirically 
different methods of estimating risk premiums. We compare four methods: (1) BJS 
estimation without rolling betas; (2) the rolling-β method of Fama and Macbeth (1973); (3) 
the rolling-β method using β ’s estimated with non-overlapping observations as the 
instrumental variable; (4) Theil’s adjustment. In applying the rolling beta method, we 
assume the rolling window is 15 for T=60 and 60 for T=600.   
 
Fama and French’s three factors 1964 to 2009 are available on Kenneth French’s data 
library. We use these factors along with 100 size and book-to-market portfolios plus 49 
industry portfolios as well as the 25 size and book-to-market portoflios. In addition to these 
25 and 149 portfolios, we obtain returns for 4,970 individual stocks from CRSP  that have 
fewer than 20%  missing observations from 2000 to 2009.   
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The macro variables are chosen following Chen, Roll and Ross (1986) including 
unexpected consumption growth, unexpected inflation and unexpected change in industrial 
production. The raw series are obtained from the Federal Reserve at St Louis. To measure 
consumption, we add the consumption of nondurables to services and divide by the US 
population. The Consumer Price Index for All Urban Consumers is our measured price 
level. Raw growth rate was estimated as the log differences of these level variables. 
 
The macro factors are estimated shocks from conditional expected values estimated from 
a vector auto-regression (VAR). Specifically, define Xt≡ [ΔCt : ΔIPt : ΔCPIt]’ where  ΔCt, 
ΔIPt, and ΔCPIt  are raw consumption growth, industrial production growth and the 
inflation rate, respectively. Then Xt is modeled as an (1)AR  process that follows a vector 
auto-regression Xt= A + BXt + ζt where ζt denotes the 3×1 vector of VAR innovations.  
The fitted value 𝑿𝑿�t = 𝑨𝑨� + 𝑩𝑩�𝑿𝑿�t−1is our the conditional expected value of Xt. The shock or 
unexpected value 𝑿𝑿t − 𝑿𝑿�t is assumed to be the driving factor for assets.   

 
4.1  Simulations 
 
For the three Fama-French factors, we assume that the true risk premiums are the sample 
means of excess return factors. Shanken (1992) shows that the sample mean is an consistent 
estimator of the risk premiums. Using data from 1964 to 2009, we regress returns on the 
factors to estimate β ’s for each portfolio and calculate the regression residues using 
returns, factors and estimated β’s. In the bootstrap simulation, the factors and the error 
terms are re-sampled from the the pool of observed factors and error terms generated by 
the above regressions. Re-sampled factors, error terms and estimated β ’s are used to 
generate the simulated (re-sampled) portfolio returns.  
 
However, as in Kan and Zhang (1999) or Kleibergen (2009), the regression in the second 
pass has a multi-collinearity problem because the estimated β ’s on the market are close 
to 1 for all N simulated portfolios. To alleviate this problem, we use the following method: 
we regress returns on all three factors. However, since the estimated β  on the market is 
close to 1 for all portfolios, in the second pass, we only regress the returns on the estimated 
β ’s on market, book-to-market and size in the second pass and omit the intercept. This 
essentially assumes that the Fama-French three-factor model is true and that its constant 
term is zero. Of course, if the model is not true, this estimation procedure is likely to 
produce biased risk premiums for all three factors. This is an inherent problem with 
portfolio grouping if market betas for the portfolios are all close to 1.0. 
 
For the Fama-French three-factor model, we generate returns and factors 10,000 times. 
Each of the 10,000 samples has T of 60 or 600 and N of 25 and 149, which allows us to 
examine performance in various finite samples. We use the BJS method, rolling-β method 
and the β IV method to estimate the risk premiums. Hence, there are 10,000 estimated risk 
premiums for each of the methods. The reported risk premiums are the average of these 
estimated risk premiums. We also present the T-ratio of the difference between reported 
risk premiums and their true values. The standard errors used to construct the T-ratio are 
based on the sample covariance of the estimated risk premiums from 10,000 trials. 
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In addition to the portfolios, we use individual stocks (with N=4,970) to estimate the risk 
premiums in the Fama-French three-factor model. With individual stocks, the β on market 
is not a redundant variable in the second pass; hence, we run a cross-sectional regression 
of the returns on 1 and the estimated β ’s of all three factors in the second pass. 
 
We also simulate macro factors and concommitant errors and investigate them with the 
three methods. Since the macro factors are less volatile than the traded factors, the linear 
factor model has larger idiosyncratic risk; therefore, the errors-in-variables bias is likely to 
be much larger. We examine this case in the context of monthly returns for 4,970 individual 
stocks from CRSP. In this examination, T is either 60 or 600 and N takes on three values, 
25, 149, and 4,970. Each combination of parameters is replicated 10,000 times. To estimate 
the “true” risk premiums of the macro factors in the simulation, we average estimated risk 
premiums from the literature.5 

 
 

4.2  Simulation Results for the Fama-French Three-Factor (Traded Factors) Model 
 
Table 1 presents the average estimated risk premiums of three-factor model using 25 
portfolios. When there are 25 portfolios, the estimated risk premiums from both the BJS 
and the Fama-Macbeth rolling beta methods have errors-in-variables bias. When the 
sample period is only 60, this bias is large. Interestingly, even when T = 600, and the rolling 
window is 60, the Fama-Macbeth rolling beta method produces risk premiums that are still 
about 20 percent smaller than their true values. Evidently, either the rolling window or the 
sample period is too short to eliminate the bias. In contrast, the β IV method produces 
accurate estimated risk premiums when the sample size is both 60 and 600. T-ratios of the 
difference are small for all estimated risk premiums, indicating that the bias is negligible 
in statistical sense as well. 
 

*** Insert Table 1 here *** 
 
For 149 portfolios, results are presented in Table 2. The errors-in-variables bias is small.   
though it is larger than the bias with 25 portfolios (Table 1). This is because grouping 
stocks into 25 well-diversified portfolios diversifies away idiosyncratic risk better than 
grouping the same stocks into 149 portfolios. Using T-ratios of difference, the bias for 
classical methods (BJS method and Fama-Macbeth method) are significant when T=600.  

 
*** Insert Table 2 here *** 

 
Estimated risk premiums using 4970  individual stocks are shown in the Table 3. For T = 
60, estimated risk premiums from the β IV method have smallest bias. The bias is largest 
for the size factor, about 20% with the β IV method (Rolling IV), but this is smaller than 
that produced by the BJS method (about 40% ), and by the Fama-Macbeth method  
(more than a 60% .) For T = 600, the BJS method, β IV method and Theil’s adjustment 

5 These papers include Chen, Roll and Ross (1986), Ferson and Harvey (1991), Chan Chen and Hsieh (1985), Jagannathan and Wang 
(1996) and Kramer (1994). 
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produce consistent estimated risk premiums for the three factor model. But estimated risk 
premiums from the Fama-Macbeth rolling beta method can have a bias as large as a 25% . 
The bias for classical methods is larger with 4,970 stocks than that for 25 or 149 portfolios 
given larger T-ratios. Theil’s adjustment has a smaller bias for the size factor than the β IV 
method, but has a larger bias for the book-to-market factor. 
 

*** Insert Table 3 here *** 
 
These simulations imply that the finite sample bias in the estimated risk premium is 
relatively large when the sample period is small and the idiosyncratic risk is high. The β 
IV method can reduce the finite sample bias, especially when the sample period is small 
and the number of portfolios or stocks is large. Theil’s adjustment is also successful in 
adjusting for the finite sample bias.  

 
4.3  Macroeconomic Factor Premiums 

 
In addition to traded factors, we also compare the estimated risk premiums of 
macroeconomic factors in Tables 4, 5 and 6, respectively. The results are consistent 
showing β IV method can reduce the finite sample bias.  

*** Insert Tables 4, 5, and 6 here *** 
 
We also compare the estimated risk premiums for 25 and 149 portfolios in Tables 4 and 5. 
The estimated risk premiums for the BJS method and the Fama-Macbeth method have 
larger bias than with the 4,970 stocks described below suggesting the grouping might not 
result in a smaller finite sample bias. But the results are more different for the β IV method 
and Theil’s adjustment. Estimated risk premiums using these two methods are far from the 
true risk premiums. These two methods can produce unreasonable risk premiums for some 
simulations due to the fact that 'ˆˆ

tτt ββ −  or ATββ ˆN1ˆ1ˆ −′  is not positive definite when N is 
not large enough and the instrumental variables are weak. One method to deal with the 
weak instrument is to remove the observations of the stocks with instruments and factor 
loadings having different signs. However, further reducing the number of stocks is not 
applicable when this number is small. Thus, these methods can produce consistent 
estimators only when the number of stocks or portfolios is reasonably large. Using 
simulations, we find that when number of stocks is larger than 2000, these methods can 
adjust the bias. (These simulation results are available from the authors upon request.)  
The simulation results with 4,970 stocks are shown in Table 6. Since there is substantial 
idiosyncratic risk for individual stocks, the estimation error in β  is large in the first pass 
and the bias is large for both the BJS method and the Fama-Macbeth method. The estimated 
risk premiums are one third or one tenth of the true value of the risk premiums for these 
two methods, respectively. T-ratios from the classical methods are much larger than those 
from the macro factors, indicating that bias is larger in statistical sense as well. However, 
the estimators from the BJS method with Theil’s adjustment and the β IV method are much 
closer to the true values. T-ratios are insignicant for β IV method, though it is significant 
for Theil’s adjustment when T=60. 
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4.4  Time-varying factor loadings and regression residuals 
 
The above simulations are all based on the constant factor loadings and constant volatility 
of the regression residuals. We also want to examine the various methods with time-
varying factor loadings and regression residuals. To do this, we estimate the factor loadings 
from stock returns and factors using a rolling window of 30 months. The estimated factor 
loadings are assumed to be the true factor loadings in the simulations. Since the estimated 
factor loadings using rolling windows are time-varying, the true factor loadings in the 
simulations are also time-varying. Similarly, we can estimate the residuals from the 
regression, and create a pool of residuals. To bootstrap the residuals, we first select a time 
point, and randomly select one of the estimated residuals in a neighborhood (either within 
15 or 30 months) of this time point from the residual pool. This provides time-varying 
residuals in the simulations. 
 
With these simulated time-varying factor loadings and regression residuals, we can 
compare various methods. In particular, we are interested in comparing the β IV method 
with other existing methods. The advantage of the 3-group β IV method is that it is not 
significantly affected by the time-varying factor loadings. The results, shown in Tables 7 
and 8, indicate that the 3-group β IV method yields the best estimates and smallest T-ratios 
among all other alternatives.  
 

*** Insert Tables 7 and 8 here *** 
 
 

 
4.5 Standard Errors 
 
In this subsection, we compare the asymptotic standard error of the estimated risk 
premiums from three methods: the BJS method, β IV method and Fama-Macbeth rolling-
β method.6 First we construct the “true” standard error of the risk premiums using the 
bootstrap, i.e., assuming that the standard error of risk premiums across 10,000 replications 
is the true standard error.7 
 
We compare this true standard error with the method-specific estimated standard errors, 
including Fama-Macbeth errors with and without the adjusting for the autocovariances, 
Shanken’s adjustment and estimated errors from Theorem 3.2. 
 
There are two different asymptotic covariance from Theorem 3.2. We can obtain NT -
asymptotic covariance V from 

)(0,))(0,))(0,ˆ(
12τT

1(NT tt

T

2τ=t
Vγfγ N→′−′−

+− ∑ . 

6 The asymptotic standard error of the Theil’s adjustment is the Shanken adjustment, which is the same as the BJS method. 
7 The constructed "true" standard error are similar for 1,000 simulations and 10,000 simulations, indicating the convergence of the 
standard error when the simulation number is approximately 1,000. 
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We can also obtain T -asymptotic covariance FΣ
~ using

)~(0,))(0,'ˆ
12τT

1(T t

T

2τ=t
FN Σγγ →′−

+− ∑ . Since it is more appealing to use an estimator 

with faster convergent rate, we will choose the first estimator, and construct NT -
convergent standard errors. 

 
Theorem

 The results for standard errors are based on 6 cases: Tables 9, 10 and 11 present the standard 
errors for the three Fama-French factors with 25 and 149 portfolios and 4,970 stocks 
respectively; Tables 12, 13 and 14 present the standard errors for macro-factors with 25 
and 149 portfolios and 4,970 stocks. 

 
4.6 Traded Factors 
 
First, we consider the standard errors for the Fama-French three factor model. In Table 9 
(when T=600 and N = 25,) for the BJS method, the standard error estimated through 
Shanken’s adjustment is closer to the true standard error than the Fama-Macbeth standard 
error without autocovariance. For the β IV method, the Fama-Macbeth standard errors 
(with or without autocovariance) and the standard error from Theorem 3.2 are all close to 
the true standard error. For the Fama-Macbeth rolling-β method, the Fama-Macbeth 
standard errors (with or without autococariances) are smaller than the true value. The 
results are similar for both 149 portfolios (Table 10) and 4,970 stocks (Table 11). 
 

*** Insert Tables 9, 10, and 11 here *** 
 
When T = 60, the estimated standard errors are much farther away from the true standard 
errors compared to the T = 600 case. However, Shanken’s covariance and the covariance 
implied by Theorem 3.2 are still the closest to the true covariance for the BJS method and 
β IV method, respectively. This is because estimated standard errors are less accurate with 
smaller T. Except for N = 4,970 and T = 60, the estimated Shanken's adjusted standard 
errors are much smaller than the true value with the BJS method because the idiosyncratic 
residuals of the individual stocks are much larger than the idiosyncratic residuals of 
portfolios. 
 
4.7 Macro Factors 
 
Tables 12 and 13 present standard errors for macro-factor models. Compared with the 
Fama-French three-factor model, the standard errors are larger. The reason is that for 25  
and 149  portfolios, the idiosyncratic errors in the macro-factor model are larger than 
those in the Fama-French three-factor model. We find similar results for the BJS method 
and rolling-β method. For rolling-β IV method, since the estimated risk premiums are 
affected by the weak IVs, the estimator and the standard errors are both unreliable.   
 

*** Insert Tables 12 and 13 here *** 
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The more interesting results are shown in Table 14 with 4,970 individual stocks. When T 
= 60, all of the estimated standard errors are much smaller than the true standard errors, 
suggesting that they are inaccurate when T is small. When T = 600, the Shanken adjustment 
and the Fama-Macbeth standard errors with autocovariance are closer to the true value than 
those from the BJS and the Fama-Macbeth rolling-β IV methods respectively, but they are 
still much smaller than the true value. The results indicate that for marco-factor models, 
even if T = 600, the estimated standard errors are not accurate.8 The standard error from 
Theorem 3.2 is the closest to the true value, and the Fama-Macbeth standard error with 
autocovariance is also close to the standard error from Theorem 3.2 with the the β IV 
method. 
 

*** Insert Table 14 here *** 
 
 
Ang, Liu, and Schwarz (2010) show that if one groups stocks into portfolios to estimate 
risk premiums, the asymptotic covariance of the estimated risk premiums is larger. The 
simulated standard errors from Tables 12, 13 and 14 are consistent with their theoretical 
findings. More specifically, the standard errors decrease with the number of portfolios. 
 
The comparison of the standard errors leads to the following conclusions. First, one should 
use large enough T to make the estimated standard errors closer to the true standard errors. 
For the Fama-French three-factor model, T = 600 is large enough and for the macro-factor 
model, T needs to be much larger than 600 (e.g. with daily data). For smaller T (e.g., with 
monthly rather than daily data) but reasonably large N, using the β IV method together 
with standard errors from Theorem 3.2 or the Fama-Macbeth standard error with 
autocovariance can be more appropriate for the macro-factor model. 

 
4.8 T Statistics 
 
Lewellen, Nagel and Shanken (2010) show that the explanatory power can be misleading 
for some asset pricing models. In this paper, we examine another important issue, the size 
of the cross-sectional regression. Specifically, we want to examine the probability of 
rejecting an asset pricing model when the model is correctly specified. Following Ferson 
and Foster (1994) and Shanken and Zhou (2007), we compare the probability of rejecting 
the null hypothesis, 0α =  ( α  is the constant term), when it is true. To do this, for each 
simulation, we calculate the t-ratios for different methods and compare them with the 95%  
critical value of the standard normal distribution, 1.96. Then, we calculate the number of 
simulations  in which  absolute value of the t-ratio is greater than 1.96, and divided it by 
the total number of simulations to obtain the probability of rejecting the true null hypothesis 
(rejection rate).   
 
Since the bias of the point estimators is large for some methods, we use a "bias-corrected" 
T-ratio. To do this, we estimate the risk premiums in the first 1,000 trials, and take the 
difference between the true value and the sample average of the estimated risk premiums 

8 We did run simulations with ; the estimated standard errors are much closer to the true values. 
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as the bias. Then we adjust this bias in the simulated risk premiums to obtain the bias-
corrected T-ratios for another 1,000 trials. We compare the t-ratio with different methods 
to estimate point and standard errors in the Fama-French three-factor model and the macro-
factor model with 4970=N  and 600=T . We choose the large values of the N and T 
because these are the cases with the smallest bias for the BJS and the β instrumental 
variables methods. The results are shown in Table15. 

*** Insert Table 15 here *** 
 
 
From this Table, the rejection rate is too large for most of the tests reject. When the size of 
the statistics is correct, the rejection rate should be close 5% (it is 2.5% for the two-sided 
normal distribution, but we normalize the rejection rate so that 5% represents the correct 
size). However, for the Fama-French three-factor model, the β IV method and the BJS 
method have lower rejection rate than the Fama-Macbeth rolling-β IV. For instance, the 
largest rejection rate for the BJS method and the β IV method is smaller than 10% , but it 
is more than 15%  for the Fama-Macbeth rolling-β IV method. This is because the 
estimated standard errors are smaller than the true standard errors. Most empirical research 
finds that the existing models are generally misspecified with the Fama-Macbeth rolling-β 
IV method.9 This paper suggests that this finding may be due to the statistical issues. For 
the β IV method, the standard error from Theorem 3.2 leads to a rejection rate of 4.70%  
which is close to the true rejection rate of 5%. All other standard errors lead to larger 
rejection rates. For the BJS method, the rejection rate is also larger than 5%. 
 
The conclusions are similar with the macro-factor model. The only exception is the BJS 
method with the Shanken adjustment, where the rejection rate is too small (3.3%). 
 
To conclude, the most reliable approach for testing whether an asset pricing model can be 
misspecified is to use the standard error from Theorem 3.2 in the β IV method. Using the 
Fama-Macbeth rolling-β method can result in misleading interpretations of α . 

 
 
 

5  Application of these methods 
 

According to the simulation results, the instrumental variable approach can effectively 
remove the bias in cross-sectional regressions. Thus, it is a natural to examine whether 
applying this method helps researchers identify the factors that explain the expected stock 
returns. Instead of the traded factors, we apply this method to macro factors. The macro 
factors arguably affect the stock returns. However, as we can see from the simulations, the 
estimated risk premiums with classical  methods for these macro factors are much more 
biased than those for the traded factors; thereby, it is more difficult for researchers to 
identify significant risk premiums. The instrumental variable method, which can adjust for 
the bias, is more likely to identify these risk factors. Moreover, the risk premiums of the 

9 We consider the bias-corrected T-ratio here. If the bias is not correct, one can expect a higher rejection ratio with the Fama-Macbeth 
rolling-βmethod and the BJS method. 
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macro factors can only be estimated using the cross-sectional regression approach, while 
the risk premiums of the traded factors can be estimated using the sample average of the 
excess returns (Shanken (1992)). Therefore, the macro-factor model provides perfect 
specification to study various cross-sectional regression methods. 
 
We create the same macro factors from 1964 to 2010 as before. The monthly individual 
stock returns for the same time horizon are available from CRSP. Since many stocks only 
exist for a short horizon, we exclude these short-lived stocks: i.e. stocks with less than 90 
of months return data to have large enough data (for example 30 months) to estimate factor 
loadings in the 3-sample method. Moreover, the macro factors are less likely to 
significantly affect the returns of the short-lived stocks since the majority of these returns 
should be influenced by idiosyncratic shocks. With these returns and the factors, we 
estimate the risk premiums and T-statistics of different cross-sectional regression methods: 
BJS method, Fama-Macbeth rolling-β method, lagged Rolling IV variable method, 3-group 
IV method and Thiel's adjustment. For all two instrumental variable methods, the issue of 
weak instrumental variables can affect the estimated risk premiums. Thus, we drop the 
observations of the stocks for which the estimated β instruments and estimated factor 
loadings from two subsamples have opposite signs. The estimated risk premiums and the 
T-statistics are shown in Tables 16 and 17.  
 

*** Insert Table 16 and 17 here *** 
 
 
We find that the estimated risk premiums with the classical methods are generally smaller 
than the instrumental variables approach. For example, when the second pass is OLS, the 
risk premium estimates of consumption growth are 0.006 and -0.001 with BJS and Fama-
Macbeth approach, respectively. Nevertheless, the estimated risk premiums for the rolling-
β IV method and the 3-group IV method are 0.097 and 0.028, which are much larger. The 
T-statistics are also larger. For example, we find that the consumption growth can 
significantly affect the stock returns with two instrumental variable methods, but for the 
classical approaches, we cannot find such result. The findings from Thiel's adjustment are 
also noteworthy. When the second pass is OLS, although some estimators are even larger 
than those with instrumental variable approaches, the T-ratios do not lead to rejection of 
the null hypothesis. Moreover, with GLS as the second pass, we find that the consumption 
growth estimated from Thiel’s adjustment negatively affects the stock returns, which is 
inconsistent with the findings with OLS estimators. Surprisingly, a shock in industry 
production negatively affects stock returns. The only significant coefficients are estimated 
using the lagged instrumental variable approach (for both OLS and GLS), the Fama-
Macbeth (OLS), and the BJS (GLS). Theil’s adjustment using GLS is the only one that 
results in positive and significant risk premium from industry production shock. However, 
the result is not very reliable: (1) Theil’s adjustment estimator with GLS is much smaller 
(in absolute value) than classical methods with GLS; thus, it is not clear whether the Thiel’s 
adjustment can control the errors-in-variables (attenuation) bias. (2) Theoretically, the OLS 
and GLS estimators should be close when the sample size is large enough. For the IV 
methods, the GLS and OLS estimators are close to each other. However, for the Thiels’ 
adjustment, the GLS estimator are very different from the OLS estimator. (3) The OLS and 
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GLS estimators lead to inconsistent results for Industry production in terms of the statistical 
significance. Lastly, the shock in inflation is insignificant for almost all methods; although, 
the sign is negative.  

 
 
 
6  Conclusion 

 
This paper suggests an adjustment for the Fama-Macbeth β IV method. Estimated β ’s 
from non-overlapping observations can serve as effective instruments and mitigate or 
entirely eliminate the errors-in-variables bias. For the cases of constant β  and time-
varying β , we prove consistency and derive the asymptotic distribution of the estimated 
risk premium when the number of portfolios N is large.   
 
When β  is a general function of conditioning information, we use simulations to 
compare the β IV method with the traditional BJS method and the traditional Fama-
Macbeth method. For macro factors, the bias is large for the latter two methods when the 
number of portfolio is large and the total sample period T is small. The β IV method and 
Theil’s adjustment method are consistent and the estimated risk premiums are much closer 
to the true value even when T is small (e.g. T=60). This is due to the NT -convergent 
rate of these estimators. As long as N is large, the estimated risk premiums have much 
smaller bias even if T is small. Moreover, the traditional and still widely used Fama-
Macbeth method has the largest bias among the three methods. Using the lagged estimated 
β  as the instrumental variable corrects this bias significantly. 

 
In addition, this paper provides the standard error estimators (Theorem 3.2) and the Fama-
Macbeth standard error with autocovariance that are superior to alternative estimators when 
T and N are relatively large. We conduct simulations to evaluate the various standard errors 
and t-ratios for tests on the null hypothesis that 0α = . The results show that most of the 
tests reject the null hypothesis too often in Fama-French and macro-factor models. The β 
IV method, combined with the standard error from Theorem 3.2, provides the best results. 
 
Finally, the empirical applications show that the new approach can indeed reduce the error-
in-variables bias and help researchers identify the factors that can affect the stock returns, 
while the bias drawn from other methods are either large or inconsistent. 
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Appendix: Proof of the Theorems 
 
Proof of Theorem 3.1. 
We prove the consistency and asymptotic theorem for the case using the lagged estimated 
facor loadings as instrumental variable. The case using the general instrumental variable 
can be proved in the exactly same way. 
 
To illustrate the prove, let the second step be OLS, i.e. IΣ =  one has:  

 .)'1ˆ()'1ˆ1ˆ(=))(0,'ˆ tτt
1

tτttt ξβββfγγ −
−

−′+−  

The consistency is established since 0βξ =)'1ˆ'( τtt −E  and the Lindeberg condition. 
Since N/ββ ′  converges to 'bb  when N∞ and ]ξβ,,ξβ[ tNNt11   satisfies the 

Lindeberg condition, one can apply the Lindeberg Central Limit Theorem. 
 
Define tt

1
ttt ')'(= ΩFFFu − . To get the asymptotic covariance, notice that as 

N∞,  
 ,')'1ˆ1ˆ(N1/ tτ bbββ →−t  

and on the other hand,  
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)|(τt F⋅−E  takes the expected value of a random variable at time τt −  conditioning on 

all the information F and ],'[='~
τtN1τt −×− ′u0u . One can show that10 

 
)|))(())((( ttttttτt Fεufγεufγ ++−′++−−E  

 
 ,=)|))(())(((= 0tttttt IFεufγεufγ cE ++−′++−  

hence, 
 

 )|)'1ˆ'1ˆ(1/N( τtttτt Fβξξβ −−E  

10We will show that in the next page. 
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 .~' τt0,00 −+→ Lbb cc  

 
Then the asymptotic covariance matrix can be written as  
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In the second step is GLS, one has:  
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The consistency can be proved in same way as before. To derive the asymptotic covariance, 
one can show that  
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so the conditional asymptotic distribution can be derived similarly as before. 
 
Note that the key step in this proof is that  
 

ββFβεufγεufγβ ′′++−′++− 0tttttt =)|))(())((( cE . 
 
This result follows the proof in Shanken (1992). The details are shown below: 
Since tt

1
ttt ')'(= Ω− FFFu , 
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Applying this formula, one has  
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Using this method, one has  
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similarly, one can show that 
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Proof of Theorem 3.2. 
 
From Theorem 3.1,  
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When the second step is OLS, to derive the unconditional asymptotic distribution, 

notice that 
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By the assumption that tf  is a stationary process and β  satisfies the Lindeberg 
condition, it is clear that one can apply the Central Limit Theorem to derive the asymptotic 
distribution of ))(0,ˆ( tt

T
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′−∑ fγ , i.e.  
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The asymptotic variance can be written as the summation of variance and autocovariance 
of the error term.  
 
To be more specific, first, notice that conditional on F :   
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The final asymptotic variance is as follows:  
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Table 1 
Three methods to estimate Fama-French three-factor risk premiums using the bootstrap 

 (25 portfolios, monthly data) 
 

This Table uses the FF three-factor model to generate stock returns.  The first pass is a 
time series regression of returns on market, size, and book-to-market factors for each asset, 
which produces beta estimates. The second pass regresses asset returns cross-sectionally 
on the market β  , size β   and book-to market β . This Table presents the  estimated 
risk premiums with 25 portfolios using the BJS estimation without rolling beta (BJS), the 
Fama-Macbeth rolling beta method (Rolling), and the lagged beta IV method (Rolling IV). 
The estimation is based on monthly data. 25 portfolios include 25 size and book-to-market 
portfolios for 1964 to 2009. In applying the rolling beta method, we assume the rolling 
window is 15 for T=60 and 60 for T=600. The true risk premiums (True) are the sample 
means of excess return factors. We also report the T-ratio (T-Diff) of the difference 
between reported risk premiums and their true values. The standard errors used to construct 
the T-ratio are based on the sample covariance of the estimated risk premiums from 10,000 
trials. 
 

 
  T=60 Rolling window 15 

Factor  Market   Size   BM  
True  0.41 0.26 0.42 
BJS  0.43 0.25 0.40 

T-Diff  0.23 -0.16 -0.14 
Rolling  0.45 0.23 0.35 
T-Diff  0.44 -0.32 -0.49 

Rolling IV  0.41 0.26 0.43 
T-Diff  -0.05 -0.03 0.08 

T=600 Rolling window 60 
True  0.41 0.26 0.42 
BJS  0.42 0.26 0.41 

T-Diff  0.25 -0.16 -0.16 
Rolling  0.43 0.25 0.40 
T-Diff  0.69 -0.49 -0.43 

Rolling IV  0.42 0.26 0.42 
T-Diff  -0.04 0.01 0.02 
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Table 2 
Three methods to estimate Fama-French three-factor risk premiums using the bootstrap 

(149 portfolios, monthly data) 
 

This Table uses the FF three-factor model to generate stock returns. The first pass is a time 
series regression of returns on market, size, and book-to-market factors for each asset, 
which produces beta estimates. The second pass regresses asset returns cross-sectionally 
on the market β  , size β   and book-to market β .This Table presents the estimated 
risk premiums with 149 portfolios using the BJS estimation without rolling beta (BJS), the 
Fama-Macbeth rolling beta method (Rolling), and the lagged beta IV method (Rolling IV). 
The estimation is based on monthly data. 149 portfolios include 100 size and book-to-
market portfolios combined with 49 industry portfolios. In applying the rolling beta method, 
we assume the rolling window is 15 for T=60 and 60 for T=600. The true risk premiums 
(True) are the sample means of excess return factors. We also report the T-ratio (T-Diff) 
of the difference between reported risk premiums and their true values. The standard errors 
used to construct the T-ratio are based on the sample covariance of the estimated risk 
premiums from 10,000 trials. 
 

 
 

  T=60 Rolling window 15 
Factor  Market   Size   BM  
True  0.41 0.26 0.42 
BJS  0.44 0.25 0.36 

T-Diff  0.53 -0.22 -0.63 
Rolling  0.51 0.18 0.22 
T-Diff  1.19 -0.70 -1.21 

Rolling IV  0.41 0.27 0.43 
T-Diff  -0.06 0.05 0.09 

T=600 Rolling window 60 
True  0.41 0.26 0.42 
BJS  0.42 0.25 0.41 

T-Diff  1.77 -0.73 -2.23 
Rolling  0.44 0.24 0.35 
T-Diff  1.62 -1.10 -2.31 

Rolling IV  0.41 0.26 0.42  
T-Diff   -0.04 -0.04 -0.02 
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Table 3 
Three methods to estimate Fama-French three-factor risk premiums using the bootstrap 

(4,970 stocks, monthly data) 
 

This Table uses the FF three-factor model to generate stock returns.  The first pass is a 
time series regression of returns on market, size, and book-to-market factors for each asset, 
which produces beta estimates. The second pass regresses asset returns cross-sectionally 
on the market β , size β and book-to market β .This Table presents the estimated risk 
premiums with 4,970 individual stocks using the BJS estimation without rolling beta (BJS), 
the Fama-Macbeth rolling beta method (Rolling), lagged beta IV method (Rolling IV), and 
Theil adjustment (Theil). The estimation is based on monthly data from 1964 to 2009. In 
applying the rolling beta method, we assume the rolling window is 15 for T=60 and 60 for 
T=600. The true risk premiums (True) are the sample means of excess return factors. We 
also report the T-ratio (T-Diff) of the difference between reported risk premiums and their 
true values. The standard errors used to construct the T-ratio are based on the sample 
covariance of the estimated risk premiums from 10,000 trials. 
 

 
T=60 Rolling window 15 

Factor   constant   Market   Size   BM  
True  0.00 0.41 0.26 0.42 
BJS  0.07 0.32 0.15 0.29 

T-Diff  1.20 -1.16 -0.97 -1.06 
Rolling  0.17 0.17 0.09 0.12 
T-Diff  0.99 -1.04 -0.68 -1.13 

Rolling IV  0.02 0.36 0.19 0.47 
T-Diff  0.47 -1.15 -1.08 0.77 
Theil -0.00 0.36 0.22 0.53 
T-Diff  -0.05 -0.67 -0.38 0.96 

T=600 Rolling window =60 
True  0.00 0.41 0.26 0.42 
BJS  0.01 0.41 0.25 0.40 

T-Diff  1.02 -0.60 -1.60 -1.64 
Rolling  0.06 0.37 0.19 0.27 
T-Diff  2.90 -1.72 -1.89 -3.68 

Rolling IV  0.00 0.41 0.26 0.42 
T-Diff  0.02 -0.04 0.03 -0.05 
Theil -0.00 0.42 0.26 0.40 
T-Diff  -0.02 1.07 0.27 -1.74 

 
 

 
 

Table 4 
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Three methods to estimate macro three-factor risk premiums using the bootstrap 
(25 portfolios, monthly data) 

 
This Table presents the estimated risk premiums with 25 portfolios using the BJS 
estimation without rolling beta (BJS), the Fama-Macbeth rolling beta method (Rolling), 
lagged beta IV method (Rolling IV), and Theil’s adjustment (Theil). The estimation is 
based on monthly data. 25 portfolios include 25 size and book-to-market portfolios for 
1964 to 2009. In applying rolling beta method, we assume the rolling window is 15 for 
total period T=60 and 60 for T=600.  The three factors are ΔC: consumption growth, 
ΔCPI: change in inflation, and ΔIP: change in industrial production. The true risk premiums 
(True) are the sample means of excess return factors. We also report the T-ratio (T-Diff) 
of the difference between reported risk premiums and their true values (True). The standard 
errors used to construct the T-ratio are based on the sample covariance of the estimated 
risk premiums from 10,000 trials. 
 

 
T=60 Rolling window 15 

Factor   constant  ΔC  ΔCPI  ΔIP  
True   0.00   0.20   -0.10   1.20  
BJS   -0.03   0.02   -0.03   0.09  

T-Diff   -0.18  -3.39   1.72  -5.39  
Rolling   -0.01   0.00   -0.01   0.02  
T-Diff   -0.15  -4.95  2.76  -8.28  

Rolling IV   -0.17   0.31   0.93   -1.43  
T-Diff   -0.00   0.01   0.01   -0.01  
Theil  -0.26   0.66   -1.09   0.97  
T-Diff   -0.54   1.01   -1.78   3.11  

T=600 Rolling window 60 
True   0.00   0.20   -0.10   1.20  
BJS   -0.04   0.10   -0.01   0.57  

T-Diff   -1.50  -3.79   2.33  -6.49  
Rolling   -0.07   0.02   -0.03   0.09  
T-Diff   -4.08  -16.09   9.94  -24.63  

Rolling IV   17.62   -7.35   -3.70   9.18  
T-Diff   0.00   -0.00   -0.01   0.01  
Theil  0.30   0.15   -0.84   1.56  
T-Diff   0.32   0.76   -0.39   0.79  
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Table 5 
Three methods to estimate macro three-factor risk premiums using the bootstrap 

(149 portfolios, monthly data) 
 

This Table presents the estimated risk premiums with 149 portfolios using the BJS 
estimation without rolling beta (BJS), the Fama-Macbeth rolling beta method (Rolling), 
the rolling beta IV method (Rolling IV), and Theil’s adjustment (Theil). The estimation is 
based on monthly data from 1964 to 2009. 149 portfolios include 100 size and book-to-
market portfolios combined with 49 industry portfolios. In applying rolling beta method, 
we assume the rolling window is 15 for total period T=60 and 60 for T=600.  The three 
factors are ΔC: consumption growth, ΔCPI: change in inflation, ΔIP: change in industrial 
production. The true risk premiums (True) are the sample means of excess return factors. 
We also report the T-ratio (T-Diff) of the difference between reported risk premiums and 
their true values (True). The standard errors used to construct the T-ratio are based on the 
sample covariance of the estimated risk premiums from 10,000 trials. 
 

 
T=60 Rolling window 15 

Factor   constant  ΔC  ΔCPI  ΔIP  
True  0.00 0.20 -0.20 1.20 
BJS  -0.08 0.05 -0.04 0.20 

T-Diff  -0.93 -5.16 3.15 -7.88 
Rolling  -0.08 0.01 -0.01 0.05 
T-Diff  -0.86 -6.15 3.72 -10.46 

Rolling IV  1.44 -0.55 0.12 -0.76 
T-Diff  0.01 -0.01 0.00 -0.01 
Theil -0.36 0.17 0.20 0.26 
T-Diff  -3.96 -0.73 7.46 -7.01 

T=600 Rolling window 60 
True  0.00 0.20 -0.20 1.20 
BJS  -0.06 0.15 -0.14 0.79 

T-Diff  -1.50 -4.00 2.52 -6.41 
Rolling  -0.12 0.04 -0.04 0.19 
T-Diff  -3.93 -16.09 9.94 -24.63 

Rolling IV  0.01 0.18 0.49 2.40 
T-Diff  0.00 -0.01 0.01 0.00 
Theil 0.01 0.21 -0.21 1.25 
T-Diff  0.30 0.45 -0.31 0.80 
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Table 6 
Three methods to estimate macro three-factor risk premiums using the bootstrap 

(4,970 stocks, monthly data) 
 

This Table presents the estimated risk premiums with 4,970 individual stocks using the 
BJS estimation without rolling beta (BJS), the Fama-Macbeth rolling beta method 
(Rolling), the rolling beta IV method (Rolling IV), and Theil’s adjustment (Theil). The 
estimation is based on monthly data from 1964 to 2009.In applying rolling beta method, 
we assume the rolling window is 15 for total period T=60 and 60 for T=600.  The three 
factors are ΔC: consumption growth, ΔCPI: change in inflation, and ΔIP: change in 
industrial production. The true risk premiums (True) are the sample means of excess return 
factors. We also report the T-ratio (T-Diff) of the difference between reported risk 
premiums and their true values (True). The standard errors used to construct the T-ratio are 
based on the sample covariance of the estimated risk premiums from 10,000 trials. 
 

 
 

T=60 Rolling window 15 
Factor   constant  ΔC  ΔCPI  ΔIP  
True  0.00 0.20 -0.20 1.20 
BJS  -0.05 0.07 -0.06 0.43 

T-Diff  -1.51 -5.88 3.21 -6.40 
Rolling  -0.04 0.02 -0.02 0.14 
T-Diff  -1.25 -6.64 3.90 -9.84 

Rolling IV  -0.03 0.21 -0.21 1.31 
T-Diff  -0.49 0.27 -0.09 0.45 
Theil -0.03 0.23 -0.25 1.42 
T-Diff  -0.97 1.39 -1.16 1.83 

T=600 Rolling window 60 
True  0.00 0.20 -0.20 1.20 
BJS  -0.01 0.17 -0.16 1.02 

T-Diff  -0.69 -9.55 5.96 -9.35 
Rolling  0.35 0.07 -0.06 0.45 
T-Diff  36.89 17.00 10.22 -19.26 

Rolling IV  -0.00 0.20 -0.20 1.20 
T-Diff  -0.05 -0.02 -0.04 0.04 
Theil -0.00 0.20 -0.20 1.21 
T-Diff  -0.13 0.16 -0.04 0.09 
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Table 7 

Various methods to estimate Fama-French three-factor risk premiums with time-varying 
factor loadings and regression residuals (4,970 stocks monthly data) 

 
This Table uses the FF three-factor model to generate stock returns with time-varying 
factor loadings and regression residuals, and presents the estimated risk premiums with 
4,970 individual stocks using the BJS estimation without rolling beta (BJS), the Fama-
Macbeth rolling beta method (Rolling), the rolling beta IV method (Rolling IV) and 3-
group IV. We assume that the true risk premiums (True) are the sample mean of each 
excess return factor. The total periods are T=60 and 600. In applying the rolling beta 
method, we assume the rolling window is 15 for T=60 and 60 for T=600. 
 

T=60 Rolling window 15 
Factor   constant   Market   Size   BM  
True   0.00   0.41   0.26   0.42  
BJS   0.11  0.28  0.12  0.25 

T-Diff   1.71 -1.20 -0.95 -1.09 
Rolling   0.20  0.13  0.08  0.10 
T-Diff   1.09 -1.14 -0.66 -1.30 

Rolling IV   0.02  0.33  0.17  0.49 
T-Diff  0.49 -1.25 -1.05  0.87 

3-group IV 0.02  0.38  0.24  0.40 
T-Diff  0.39 -0.69 -0.11 -0.22 
Thiel -0.00  0.33  0.18 0.53 
T-Diff  -0.06 -0.75 -0.35 1.03 

T=600 Rolling window =60 
True   0.00   0.41   0.26   0.42  
BJS   0.02  0.39  0.23  0.38 

T-Diff  1.19 -1.58 -2.31 -2.29 
Rolling   0.10   0.35  0.18  0.23 
T-Diff  3.88 -2.82 -1.91 -5.38 

Rolling IV   0.00  0.39  0.23  0.39 
T-Diff  0.05 -0.90 -1.21 -1.25 

3-group IV 0.00  0.41  0.25  0.42 
T-Diff  0.03 -0.36 -0.21 -0.30 
Thiel -0.00  0.38   0.23   0.40 
T-Diff  -0.04 -1.67 -0.97 -1.84 
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Table 8 
Three methods to estimate macro three-factor risk premiums using the bootstrap with 

time-varying factor loadings and regression residuals (4,970 stocks, monthly data) 
 

This Table uses the three macro-factor model to generate stock returns with time-varying 
factor loadings and regression residuals, and presents the estimated risk premiums with 
4,970 individual stocks using the BJS estimation without rolling beta (BJS), the Fama-
Macbeth rolling beta method (Rolling), the rolling beta IV method (Rolling IV) and 3-
group IV method. We assume that the true risk premiums (True) are the sample mean of 
each excess return factor. The total periods are T=60 and 600. In applying rolling beta 
method, we assume the rolling window is 15 for total period T=60 and 60 for T=600.  The 
three factors are ΔC: consumption growth, ΔCPI: change in inflation, and ΔIP: change in 
industrial production. 

 
T=60 Rolling window 15 

Factor   constant  ΔC  ΔCPI  ΔIP  
True   0.00   0.20   -0.20   1.20  
BJS   -0.07   0.06   -0.05   0.33  

T-Diff  -1.91 -6.18 3.89 -8.03 
Rolling   -0.07   0.02   -0.02   0.12  
T-Diff  -1.93 -7.01 3.98 -10.12 

Rolling IV   -0.04   0.22   -0.24   1.38  
T-Diff  -0.54  0.40  -0.42  0.63 

3-group IV -0.03   0.21   -0.22   1.28  
T-Diff  -0.31  0.25  -0.13  0.23 
Thiel -0.04   0.25   -0.27   1.48  
T-Diff  -1.08  1.55  -1.45  2.02 

T=600 Rolling window =60 
True   0.00   0.20   -0.20   1.20  
BJS   -0.01   0.15   -0.13   0.92  

T-Diff  -0.78 -10.18  7.03 -11.35 
Rolling   0.55   0.07   -0.05   0.40  
T-Diff  48.29 -17.39  10.90 -19.89 

Rolling IV -0.00    0.21   -0.19   1.18  
T-Diff  -0.25  -0.60  -0.62 -0.74 

3-group IV  -0.00   0.20   -0.19   1.20  
T-Diff  -0.08 -0.11  -0.40 -0.21 
Thiel   -0.00   0.21   -0.18   1.11  
T-Diff  -0.13  1.26  -1.30 -2.99 
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Table 9 
The standard error for Fama-French three-factor risk premiums  

(25 portfolios monthly data) 
 

This Table presents the standard error of the estimated risk premiums for the BJS 
estimation without rolling beta (BJS), the Fama-Macbeth rolling beta method (Rolling), 
and the lagged beta IV method (Rolling IV).  The estimation is based on monthly data. 25 
portfolios include 25 size and book-to-market portfolios for 1964 to 2009. The true 
standard error (True) is calculated using the bootsrapped covariance of the estimated risk 
premiums.  The estimated standard error is the average of the bootstrapped Fama-
Macbeth standard errors.  The Fama-Macbeth standard errors contain the autocovariance 
(Auto) of estimated risk premiums in each period up to the length of rolling windows.  
This length of the rolling window is 15 for total period T=60 and 60 for T=600.  We also 
present Fama-Macbeth standard errors ignoring the autocovariance.  For the BJS method, 
we also present the Shanken adjustment in estimated standard errors. 

 
 

T=60 Rolling window 15 
Factor  Market   Size   BM  

BJS Method 
True   0.07   0.09   0.11  

Estimated 
(No Auto)  

 0.06   0.08   0.10  

Estimated 
(Shanken)  

 0.06   0.08   0.10  

Rolling Method 
True   0.08   0.11   0.13  

Estimated 
(No Auto)  

 0.06   0.08   0.10  

Estimated 
(With Auto)  

 0.06   0.08   0.09 

Rolling IV method 
True   0.11   0.15   0.18  

Estimated 
(No Auto)  

 0.09   0.12   0.15  

Estimated 
(With Auto)  

 0.07   0.09   0.12  

Estimated 
(Theory 3.2)  

 0.13   0.17   0.21  

T=600 Rolling window 60 
BJS Method 

True   0.02   0.03   0.03  
Estimated 
(No Auto)  

 0.02   0.03   0.03  

Estimated 
(Shanken)  

 0.02   0.03   0.03 
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Rolling Method 
True   0.02   0.03   0.04  

Estimated 
(No Auto)  

 0.02   0.03   0.03  

Estimated 
(With Auto)  

 0.02   0.03   0.03  

Rolling IV method 
True   0.02   0.03   0.04 

Estimated 
(No Auto)  

 0.02   0.03   0.04 

Estimated 
(With Auto)  

 0.02   0.03   0.04  

Estimated 
(Theory 3.2)  

 0.02   0.03   0.04  
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Table 10 
The standard error for Fama-French three-factor risk premiums  

(149 portfolios monthly data) 
 

This Table presents the standard error of the estimated risk premiums for the BJS 
estimation without rolling beta (BJS), the Fama-Macbeth rolling beta method (Rolling), 
and the lagged beta IV method (Rolling IV).  The estimation is based on monthly data 
from 1964 to 2009. 149 portfolios include 100 size and book-to-market portfolios 
combined with 49 industry portfolios. The true standard error (True) is calculated through 
taking the covariance of the estimated risk premiums in each simulation.  The estimated 
standard error is the average of the Fama-Macbeth standard errors in each simulation.  
The Fama-Macbeth standard errors contain the autocovariance of estimated risk premiums 
in each period up to the length of rolling windows.  This length of the rolling window is 
15 for total period T=60 and 60 for T=600.  We also compare the Fama-Macbeth standard 
errors without the autocovariance.  For BJS method, we also compare the Shanken 
adjustment in estimated standard errors.   

 
 

T=60 Rolling window 15 
Factor   Market   Size   BM  

BJS Method 
True   0.05   0.07   0.09  

Estimated 
(No Auto)  

 0.04   0.06   0.07  

Estimated 
(Shanken)  

 0.04   0.06   0.07  

Rolling Method 
True   0.08   0.12   0.16 

Estimated 
(No Auto)  

 0.05   0.07   0.09  

Estimated 
(With Auto)  

 0.04   0.06   0.07  

Rolling IV method 
Estimated 
(No Auto)  

 0.07   0.10   0.12  

Estimated 
(With Auto)  

 0.05   0.08   0.10 

Estimated 
(Theory 3.2)  

 0.09   0.13   0.17  

T=600 Rolling window 60 
BJS Method 

True   0.01   0.02   0.03  
Estimated 
(No Auto)  

 0.01   0.02   0.02  

Estimated 
(Shanken)  

 0.01   0.02   0.03  
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Rolling Method  
True   0.02   0.02   0.03  

Estimated 
(No Auto)  

 0.01   0.02   0.02  

Estimated 
(With Auto)  

 0.01   0.02   0.03 

Rolling IV method 
True   0.02   0.02   0.03  

Estimated 
(No Auto)  

 0.02   0.02   0.03  

Estimated 
(With Auto)  

 0.02   0.02   0.03  

Estimated 
(Theory 3.2)  

 0.02   0.02   0.03  
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Table11 

The standard error for Fama-French three-factor risk premiums  
(4,970 portfolios monthly data) 

 
This Table presents the standard error of the estimated risk premiums for the BJS 
estimation without rolling beta (BJS), the Fama-Macbeth rolling beta method (Rolling), 
and the lagged beta IV method (Rolling IV).  The true standard error (True) is calculated 
through taking the covariance of the estimated risk premiums in each simulation.  The 
estimated standard error is the average of the Fama-Macbeth standard errors in each 
simulation.  The Fama-Macbeth standard errors contain the autocovariance of estimated 
risk premiums in each period up to the length of rolling windows.  This length of the 
rolling window is 15 for total period T=60 and 60 for T=600.  We also compare the Fama-
Macbeth standard errors without the autocovariance.  For BJS method, we also compare 
the Shanken adjustment in estimated standard errors. 

 
 

T=60 Rolling window 15 
Factor   constant   Market   Size   BM  

  BJS Method   
True   0.06   0.08   0.12   0.12 

Estimated 
(No Auto)  

 0.02   0.02   0.02   0.02  

Estimated 
(Shanken)  

 0.02   0.02   0.02   0.02  

Rolling Method 
True   0.17   0.24   0.25   0.26  

Estimated 
(No Auto)  

 0.04   0.06   0.06   0.06  

Estimated 
(With Auto)  

 0.08   0.11   0.11   0.12 

Rolling IV method 
True   0.04   0.05   0.07   0.07  

Estimated 
(No Auto)  

 0.03   0.04   0.06   0.06 

Estimated 
(With Auto)  

 0.02   0.03   0.05   0.05  

Estimated 
(Theory 3.2)  

 0.04   0.05   0.06   0.06  

T=600 Rolling window 60 
  BJS Method   

True   0.01   0.01   0.01   0.01 
Estimated 
(No Auto)  

 0.01   0.01   0.01   0.01  

Estimated 
(Shanken)  

 0.01   0.01   0.01   0.01  
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Rolling Method 
True   0.02   0.03   0.04  0.04  

Estimated 
(No Auto)  

 0.01   0.01  0.01   0.01  

Estimated 
(With Auto)  

 0.01   0.02   0.03   0.03  

Rolling IV method 
True   0.01   0.01   0.01   0.01  

Estimated 
(No Auto)  

 0.01   0.01   0.01   0.01  

Estimated 
(With Auto)  

 0.01   0.01   0.01   0.01  

Estimated 
(Theory 3.2)  

 0.01   0.01   0.01   0.01  
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Table12 
The standard error for macro-factor risk premiums (25 portfolios monthly data) 

 
This Table presents the standard error of the estimated risk premiums for the BJS 
estimation without rolling beta (BJS), the Fama-Macbeth rolling beta method (Rolling), 
and the lagged beta IV method (Rolling IV).  The estimation is based on monthly data. 25 
portfolios include 25 size and book-to-market portfolios for 1964 to 2009. The true 
standard error (True) is calculated through taking the covariance of the estimated risk 
premiums in each simulation.  The estimated standard error is the average of the Fama-
Macbeth standard errors in each simulation.  The Fama-Macbeth standard errors contain 
the autocovariance of estimated risk premiums in each period up to the length of rolling 
windows.  This length of the rolling window is 15 for total period T=60 and 60 for T=600.  
We also compare the Fama-Macbeth standard errors without the autocovariance.  For BJS 
method, we also compare the Shanken adjustment in estimated standard errors. 

 
 

T=60 Rolling window 15 
Factor   constant  ΔC  ΔCPI  ΔIP  

BJS Method 
True   0.20   0.06   0.10   0.21  

Estimated 
(No Auto)  

 0.17   0.04   0.08   0.16  

Estimated 
(Shanken)  

 0.18   0.05   0.09   0.21  

Rolling Method 
True   0.20   0.04  0.07   0.14 

Estimated 
(No Auto)  

 0.17   0.03   0.04   0.09  

Estimated 
(With Auto)  

 0.15   0.03   0.04   0.09  

Rolling IV method 
True   162.46   41.32   62.53   118.45  

Estimated 
(No Auto)  

 162.49   41.32   62.52   118.52 

Estimated 
(With Auto)  

 107.01   27.83   45.40   86.04  

Estimated 
(Theory 3.2)  

 DNE11  DNE   1.56   DNE 

T=600 Rolling window 60 
BJS Method 

True   0.10  0.04   0.09   0.18  
Estimated 
(No Auto)  

 0.07   0.03   0.06   0.12  

Estimated  0.10   0.05   0.08   0.24  

11 DNE represents does not exist–the covariance is negative. 
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(Shanken)  
Rolling Method 

True   0.06   0.02   0.03   0.07  
Estimated 
(No Auto)  

 0.06   0.02   0.03   0.05  

Estimated 
(With Auto)  

 0.06   0.02   0.03   0.06  

Rolling IV method 
True   1168.50   444.60   490.40   1458.00  

Estimated 
(No Auto)  

 1168.50  444.60   490.40   1458.00  

Estimated 
(With Auto)  

 1119.50   425.20   469.70   1394.70  

Estimated 
(Theory 3.2)  

 DNE   DNE   DNE   DNE  
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Table 13 
The standard error for macro-factor risk premiums (149 portfolios monthly data) 

 
This Table presents the standard error of the estimated risk premiums for the BJS 
estimation without rolling beta (BJS), the Fama-Macbeth rolling beta method (Rolling), 
and the lagged beta IV method (Rolling IV). The estimation is based on monthly data from 
1964 to 2009. 149 portfolios include 100 size and book-to-market portfolios combined with 
49 industry portfolios. The true standard error (True) is calculated through taking the 
covariance of the estimated risk premiums in each simulation.  The estimated standard 
error is the average of the Fama-Macbeth standard errors in each simulation.  The Fama-
Macbeth standard errors contain the autocovariance of estimated risk premiums in each 
period up to the length of rolling windows.  This length of the rolling window is 15 for 
total period T=60 and 60 for T=600.  We also compare the Fama-Macbeth standard errors 
without the autocovariance.  For BJS method, we also compare the Shanken adjustment 
in estimated standard errors. 

 
 

T=60 Rolling window 15 
Factor   constant  ΔC  ΔCPI  ΔIP  

BJS Method 
True   0.09   0.03   0.05   0.14 

Estimated 
(No Auto)  

 0.07   0.01   0.03   0.05  

Estimated 
(Shanken)  

 0.08   0.02   0.03   0.07  

Rolling Method 
True   0.09   0.03   0.05   0.11  

Estimated 
(No Auto)  

 0.07   0.01   0.02  0.04  

Estimated 
(With Auto)  

 0.06   0.02   0.03  0.06 

Rolling IV method 
True   186.91   63.90   74.50   189.58  

Estimated 
(No Auto)  

 187.02   63.83   75.00  188.81 

Estimated 
(With Auto)  

 150.99   50.72   55.51   145.60  

Estimated 
(Theory 3.2)  

 6.44   2.09   2.36   7.52 

T=600 Rolling window 60 
BJS Method 

True   0.04   0.01   0.03   0.06  
Estimated 
(No Auto)  

 0.03   0.01   0.02   0.04  

Estimated 
(Shanken)  

 0.04   0.01   0.03   0.06  
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Rolling Method 
True   0.03   0.01   0.02   0.04  

Estimated 
(No Auto)  

 0.02   0.01   0.09   0.02 
  

Estimated 
(With Auto)  

 0.02   0.01   0.01   0.03  

Rolling IV method 
True   36.08  13.17   49.07   222.01  

Estimated 
(No Auto)  

 36.08   13.16   49.04   222.02  

Estimated 
(With Auto)  

 33.68   12.49   45.73   206.93  

Estimated 
(Theory 3.2)  

 DNE   DNE   DNE   DNE  
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Table14 
The standard error for macro-factor risk premiums (4,970 stocks, monthly data) 

 
This Table presents the standard error of the estimated risk premiums of individual 4,970 
stocks for the BJS estimation without rolling beta (BJS), the Fama-Macbeth rolling beta 
method (Rolling), and the lagged beta IV method (Rolling IV).  The true standard error 
(True) is calculated through taking the covariance of the estimated risk premiums in each 
simulation.  The estimated standard error is the average of the Fama-Macbeth standard 
errors in each simulation.  The Fama-Macbeth standard errors contain the autocovariance 
of estimated risk premiums in each period up to the length of rolling windows.  This 
length of the rolling window is 15 for total period T=60 and 60 for T=600.  We also 
compare the Fama-Macbeth standard errors without the autocovariance.  For BJS method, 
we also compare the Shanken adjustment in estimated standard errors. 

 
T=60 Rolling window 15 

Factor   constant  ΔC  ΔCPI  ΔIP  
BJS Method 

True   0.03   0.02   0.04   0.12 
Estimated 
(No Auto)  

 0.01   0.00   0.00   0.01 

Estimated 
(Shanken)  

 0.01   0.00   0.01   0.01  

Rolling Method 
True   0.03   0.03   0.05   0.11  

Estimated 
(No Auto)  

 0.02   0.01   0.01   0.02 

Estimated 
(With Auto)  

 0.02   0.01   0.02   0.05 

Rolling IV method 
True   0.07   0.04   0.11   0.25  

Estimated 
(No Auto)  

 0.04   0.03   0.09   0.19 

Estimated 
(With Auto)  

 0.06   0.04   0.12   0.20  

Estimated 
(Theory 3.2)  

 0.03   0.01   0.04   0.09  

T=600 Rolling window 60 
BJS Method 

True   0.01  0.00   0.01   0.02  
Estimated 
(No Auto)  

 0.01   0.00   0.00   0.00  

Estimated 
(Shanken)  

 0.01   0.00   0.00   0.0081  

Rolling Method 
True   0.01   0.01   0.01   0.04  

Estimated  0.01  0.00   0.00   0.01  
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(No Auto)  
Estimated 

(With Auto)  
 0.01   0.01   0.01   0.04 

Rolling IV method 
True   0.01   0.00   0.01   0.02  

Estimated 
(No Auto)  

 0.01   0.00   0.00   0.01  

Estimated 
(With Auto)  

 0.01   0.00   0.01   0.01  

Estimated 
(Theory 3.2)  

 0.01   0.00   0.01   0.02  
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Table 15 
The rejection ratio of t-statistics with non-hypothesis 0α =  (4,970 stocks, monthly data) 

 
This Table presents the t-ratio for 0α = of 4,970 individual stocks with the BJS estimation 
without rolling beta (BJS), the Fama-Macbeth rolling beta method (Rolling), and the 
lagged beta IV method (Rolling IV). The estimation is based on monthly data from 1964 
to 2009. For each simulation, we calculate the t-ratios for different methods and compare 
them with the 95%  critical value.  Then, we calculate the number of the simulations 
such that the absolute value of t-ratio is greater than the critical value and divide this 
number by the number of simulations to get the probability of rejecting the true non-
hypothesis (rejection ratio).  For different methods, there are different standard errors and 
t-ratios.  For the BJS method, we use the Fama-Macbeth standard error without 
autocovariance and Shanken’s standard error. For the Fama-Macbeth rolling-beta method, 
we use the Fama-Macbeth standard error(with and without autocovariance).  For the beta 
IV method, we use the Fama-Macbeth standard error and the standard error that derived 
from Theorem 3.2. There are two cases: the Fama-French three-factor model and the 
macro-factor model with 4970=N  and 600=T  since these are the cases with smallest 
bias for the BJS and the lagged beta IV method methods.  FF3 represents the Fama-French 
three-factor model and the MF represents macro-factor model. 

 
 

T=600 Rolling window 60 
Std method   Model   Reject Ratio   Model   Reject Ratio  

BJS Method 
Estimated 
(No Auto)  

 FF3   0.08   MF   0.30  

Estimated 
(Shanken)  

 FF3   0.07   MF   0.03  

Rolling Method 
Estimated 
(No Auto)  

 FF3   0.54   MF   0.35  

Estimated 
(With Auto)  

 FF3   0.16   MF   0.16 

Rolling IV method 
Estimated 

(Theory 3.2)  
 FF3   0.05   MF   0.05  

Estimated 
(No Auto)  

 FF3   0.17   MF   0.32  

Estimated 
(With Auto)  

 FF3   0.07   MF   0.16  
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Table16 
Estimated risk premiums for three macro factors (OLS) 

 
This Table presents the estimated risk premiums and T-ratios for three macro factor model 
using individual stock returns with the BJS estimation (BJS), the Fama-Macbeth rolling 
beta method (Rolling), the lagged beta IV method (Rolling IV), Thiel's adjustment and the 
3-group method. We use the standard errors from Fama-Macbeth (FM), Theorem 3.1 and 
Theorem 3.2 to calculate T-ratios. The length of the rolling window is 60 for total period 
T=552.  

 
T=552 Rolling window 60 

Factor   constant  ΔC  ΔCPI  ΔIP  
BJS Method 

Risk Premium   1.09   0.01   0.00   -0.01  
T-ratio 
 (FM)   

 5.77   0.54   0.11   -0.54  

Rolling Method 
Risk Premium   0.82   -0.00   -0.00   -0.07 

T-ratio 
 (FM)   

 4.95   -0.02   -0.04   -1.74 

Rolling IV method 
Risk Premium   1.06   0.10   -0.04   -0.13  

T-ratio 
 (FM)  

 11.72   4.41   -1.87   -2.52  

T-ratio 
(Theorem 3.2)   

 4.77   2.78   -1.42   -2.09  

Thiel's adjustment 
Risk Premium   0.79   0.12   -0.22   0.01  

T-ratio 
 (FM) 

 3.28   0.53   -0.57   0.60  

3-group method 
Risk Premium   0.31   0.03   -0.00   -0.04  

T-ratio 
 (FM)  

 4.46   1.99   -0.25   -2.59  

T-ratio 
(Theorem 3.1)   

 4.35   1.70   -0.08   -1.29  
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Table17 
Estimated risk premiums for three macro factors (GLS) 

 
This Table presents the estimated risk premiums and T-ratios for three macro factor model 
using individual stock returns with the BJS estimation (BJS), the Fama-Macbeth rolling 
beta method (Rolling), the lagged beta IV method (Rolling IV), Thiel's adjustment and the 
3-group method. We use the standard errors from Fama-Macbeth (FM), Theorem 3.1 and 
Theorem 3.2 to calculate T-ratios. The length of the rolling window is 60 for total period 
T=552.  

 
T=552 Rolling window 60 

Factor   constant  ΔC  ΔCPI  ΔIP  
BJS Method 

Risk Premium   0.26   0.02   -0.00   -0.03  
T-ratio 
 (FM)   

 7.54   1.42   -0.38   -2.35  

Rolling Method 
Risk Premium   0.29   0.04   -0.02   -0.07 

T-ratio 
 (FM)   

 5.87   1.13   -0.87   -1.78 

Rolling IV method 
Risk Premium   0.91   0.07   -0.04   -0.19  

T-ratio 
 (FM)  

 11.34   2.60   -1.63   -2.67  

T-ratio 
(Theorem 3.2)   

 6.19   2.13   -1.67   -3.26  

Thiel's adjustment 
Risk Premium   0.38   -0.00   -0.00   0.00  

T-ratio 
 (FM) 

 7.07   -1.62   -0.16   2.39  

3-group method 
Risk Premium   0.18   0.04   -0.01   -0.09  

T-ratio 
 (FM)  

 5.92   2.76   -1.59   -4.69  

T-ratio 
(Theorem 3.1)   

 4.48   2.60   -0.57   -3.67  
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