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Abstract

Response time is the time an agent needs to make a decision. One fundamental find-
ing in psychology and neuroscience is that, in a binary choice, the response time is shorter
as the difference between the utilities of the two options becomes larger. We consider
situations in which utilities are not observed, but rather inferred from revealed prefer-
ences: meaning they are inferred from subjects’ choices. Given data on subjects’ choices,
and the time to make those choices, we give conditions on the data that characterize the

property that response time is decreasing in utility differences.
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Response Time and Utility™

Federico Echenique and Kota Saito

1 Introduction

Response time refers to the time an agent needs to make a decision. The relation between
utility and response time has been studied extensively in psychology and neuroscience.
(See Luce (1986) and Krajbich et al. (2014) for surveys.) One fundamental finding in
psychology and neuroscience is that in binary choice experiments, subjects’ response
time is shorter as the difference between the utility of the two options becomes larger.
This finding is based on having estimates of subjects’ values for the different options.
In classical economic environments, however, one has no access to such “psychometric”
estimates of utility (indeed the traditional position is to discourage economists from using

them), and must infer utility from choices.

We consider the property that response time is decreasing in utility differences from
the perspective of revealed preference theory. Given is data on agents’ choices, and the
time taken to make them. We give conditions that describe when data is consistent with

the theory that response time is decreasing in utility differences.

In a binary choice between x and y, t(z,y) denotes the response time which the agent

needs to choose over = to y. We axiomatize the following model:

t(z,y) = flu(z) — u(y)), (1)

*We thank Antonio Rangel, Ian Krajbich, and John Clithero for valuable discussions.




where f is strictly decreasing function and u(x) > u(y). The strict decreasingness of f

captures the inverse relationship between response times and utility differences.

The model in (1) is captured by a few simple properties, or axioms. The first is that
choices must be acyclic; this is standard, as (1) is based on maximizing utility and a
cycle in an agents choices would indicate that utility is not being maximized. The other
properties capturing model (1) are discussed in detail in Section 3. The basic idea is
that, since f is supposed to be decreasing, one obtains restrictions on concatenated pairs
of choices. Furthermore, under a rich domain assumption, we show that f and u are

uniquely identified from the data.

Our model is a generalization of several well-known models in psychology and neu-
roeconomics. In osychology, Pieron’s law states that
t = k !
(,y) =70+ 75

where [ is intensity of the choice and it is often assumed that I captures the utility

difference between the two options (i.e., I = u(x) — u(y)). (See Luce (1986) for details.)

In neuroscience, researchers use a stochastic model, Drift Diffusion Model (DDM)

proposed by Ratcliff (1978). The model implies:

1
Blt(e, )] = ro -+ - tanh (%)

where the diffusion process is B(t) = pdt + odW (t) and W(t) is a Winer process. Here,

the drift o captures the utility difference between the two options (i.e., p = u(z) — u(y)).

Both Pieron’s law and the DDM formula predict an inverse relationship between

response times and utility differences.

There are several papers on response times in economics, but ours is the first axiomatic
study on the topic. Wilcox (1993) uses response times to evaluate decision cost in his
experiments. Rubinstein (2007) measures response times in his experiments on games,
and suggests that choices made instinctively require less response time than choices that

require the use of cognitive reasoning. Piovesan and Wengstrom (2009) experimentally
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show that egoistic subjects make faster decisions than subjects with social preferences.
In experiments on single-person decision problems, Rubinstein (2013) measures response

times to study mistakes and biases such as Allais’s paradox.

Chabris et al. (2009) measure response times in their experiments on intertemporal
choices. By assuming linear utility and a specific form of discounting function, they show
an inverse relationship between average response times and utility differences. They
claim that their evidence is consistent with the models of Gabaix et al. (2006). In the
model of Gabaix et al. (2006), an agent uses partially myopic option-value calculations

to select their next cognitive operation.

More recently, Fedenberg et al. (2015) model the joint distribution of choice proba-
bilities and response time in binary choice tasks as the solution to a problem of optimal
sequential sampling, where the agent is uncertain of the utility of each action and pays
a constant cost per time for gathering information. They do not provide an axiomatiza-
tion of their model, focusing instead on which aspects of optimal sampling are implicitly

assumed by the DDM model.

A general version of our model is discussed in Krantz et al. (1971), but they focus on
environments with rich data. We use their main result to prove a version of our theorem

under a rich data assumption (see Section 3.1).

Some recent papers use response time to improve prediction rates. Clithero and
Rangel (2013) use response times to predict choices in single-person decision problems.
Based on DDM, they made predictions by using response times. Schotter and Trevino
(2014) use response times to predict threshold behavior in a simple global game experi-

ment.



2 Models

Let X be a finite set and let =C X x X x R, be the primitive that describes an agent’s
choice behavior. We write = »; y to denote (z,y,t) €>. This means that the agent
chooses x over y, and that he times time ¢ to make that decision. We denote this ¢ by
t(z,y). We assume that for every z,y € X there is at most one t € R, with (z,y,t) €>.

So we simply write z > y to denote x >, y.

Definition 1. A pair (u, f) of a function u: X — R and a strictly decreasing function

f Ry — R is called a response time representation if x > y implies that

u(r) > u(y), (2)

and moreover that

u(z) —uly) = f(t(z,y)). (3)

3 Main Results

In this section, we propose one axiom that characterizes response time representations.
The pair (u, f) is not uniquely determined from the data. To motivate the axiom, we
introduce two weaker axioms, Monotonicity and Additivity. In Section 3.1, we show
that Monotonicity and Additivity alone, under a “richness” property, characterize the

representation, and the representation has a strong uniqueness property.

It is obvious that any model based on utility maximization must avoid cycles in
revealed preference, for example that = > y, y = z and z > x. A cycle is depicted in the

following diagram, where an arrow y — x means that x > .

O

T ) z

\/’



Think of what is wrong with a cycle. In the cycle z — y — x — 2, one can start at
z, change to y, supposedly for a higher utility as y > z; then one can change from y to
x for a higher utility, and then back to z. Given that we arrive back at z, the option
we started from, it is simply not possible that utility would increase with each of those

changes.

Now we consider cycles in their relation to response time. Information on response
time is going to allow us to rule out more than just cycles in . Information on response
time conveys cardinal information on utility gains and losses. This allows us to rule out
more than just cycles in >. It allows us to rule out generalized cycles that we obtain by
some times losing utility, as long as the utility loss is compensated by a corresponding

utility gain.

Our first axiom captures the inverse relationship between response times and the
difference in the values of the two options. Consider three options z,y, z such that
x =y > z. Then, given a utility representation, the difference u(z) — u(z) must be larger
than the differences u(x) — u(y) and u(y) —u(z). So the inverse relationship implies that
the response time ¢(z, z) must be smaller than ¢(x,y) and t(y, z). Formally,

Axiom 1. (Monotonicity): If © > y,y = z, and © > z then t(x,z) < t(z,y) and
t(x,z) < t(y,z).

It should be clear than a response-time representation requires that if u(z) — u(y) >

u(z") —u(y’) > 0, then t(x,y) < t(z’,y), as the function f is monotone decreasing.

Any violation of Monotonicity can be understood as a kind of cycle. Suppose that x,
y and z are as in the axiom, but t(z,y) < t(x, z). Consider the following diagram. The
diagram does not depict a cycle, because the long line connecting x and z has an arrow

pointing towards x, not z.




Consider the “cycle” z —y —  — z, using the red arrow. When we move from z to y
and from y to x we should be gaining utility, as y > z and z > x. But when we move from
x to z, using the red arrow in the diagram, we lose utility. However, the loss in utility
is compensated by the gain when we go from y to x. We know that it is compensated
because t(z,y) < t(x,z). Therefore the end result is of a net gain in utility when we

move along: z — y — x — 2; this is not possible because we end at z, where we started.

The model has additional implications yet, beyond Monotonicity. These originate
from the difference structure. Given any z, y, and z; and 2/, ¥/, and 2/, if the response
time t(x,y) is smaller than t(2',y'); and t(y, z) is smaller than t(y/,2’), then by the
inverse relationship between response time and utility differences, the utility difference
u(z) — u(y) must be larger than u(z’) — u(y'); and u(y) — u(z) must be larger than
u(y') —u(z'). Therefore, by adding the two differences, we have that the utility difference
u(x) — u(z) is larger than u(z’) — u(z’). Hence, by the inverse relationship again, the
response time t(z, z) must be smaller than #(z’, 2’). Our reasoning suggests the following

axiom.
Axiom 2. (Additivity): Ift(z,y) < t(x',y') and t(y, z) < t(y',2'), then t(z,z) < t(2', 7).

Violations of Additivity can again be understood as exhibiting certain “cycles” in
which utility losses are appropriately compensated. For violations of Additivity, we need
more than a single cycle. Consider the situation in the following diagram, involving six

options: z, vy, z, ', ¥y and 2’

t(x,y) =3 t(y,z) =
— T~

T Yy z

—

t(z,2) =25




The diagram exhibits two “cycles:” z —y — x — z and 2’ — v/~ 2'— 2’. As before we are
using red arrows to signify a movement against a black arrow, agains revealed preference.

The red arrow changes from z to z, from 2’ to 3/, and y'to 2/, signify utility losses.

But importantly these losses are compensated by utility gains, and at least one of
them is strictly compensated. The losses 2’ — ' and v’ —2’ are compensated by the gains
z—y and y—x, as the response times of these utility gains are weakly smaller than the
response times of each of the two losses. The loss z—z is strictly compensated by the gain

Z'~x', as the response time is strictly smaller.

The effect then of traversing both cycles in the diagram is a net utility gain. 1t is not
possible to start and end at the same point and gain utility, even when we need to start
and end at two different points. In general the axiom that characterizes our model will
need to rule out collections of cycles, just as in the diagram, and it will need to keep
track of when utility losses can be said to be compensated by utility gains, given the

information we have on response times.

These observations suggest the following stronger axiom, which characterises the rep-

resentation. To show the axiom, we need to introduce some definitions.

Definition 2. A set
{(af)it k=1,..., K}

k

b and either x; = x4 or af .y = x¥ is called a collection of cycles .!

in which ¥% = x

Definition 3. Given a collection of cycles {(x¥), : k = 1,..., K}, a compensation

s a one-to-one function m that maps any pair (x,’f,xfﬂ) with o¥ = x¥. | into some pair

(), 935//+1) = m(af, xfy,) with 375//+1 = xf and t(xf'/ﬂ»i”f/) < t(af, 2f).

As we have seen in the previous examples, the idea of a compensation is that a utility

loss when we go from z¥ to zf 1 is compensated by the utility gain when we go from zh

Z/

K : Kk E k . . .
to oy, ,. The pair (zj/,z7,,) compensates (x7,x{, ;). To see this interpretation notice

1Sums are mod nj. We adopt the convention that any unquantified variable in a formula is universally

quantified over the relevant range.



that t(zh,,, %) < t(z¥,z¥, ) implies that the uitility loss by moving from zf to zF,, is

smaller than the utility gain by moving from :Uf}/ to ak 41
Definition 4. A compensation 7 is a covering if all inequalities t(miﬁlﬂ, k) < t(ak, k)
hold with equality, and if any pair xf,/H — a:f,/ is the image of (is used to compensate)
some pair z¥ = a¥ .

Axiom 3. (Compensation) For any collection of cycles, any compensation is a covering.

It should now be clear that all the three diagrams above illustrate violations of the
Compensation axiom. In the first there is no pair that needs compensating. The com-
pensation is empty, and, for example, = > y is not used to compensate any pair in the
cycle. In the second example (the violation of Monotonicity) the pair y > z is not used
to compensate any pair. Finally, in the third example (the violation of Additivity), what
goes wrong is that some response time in a compensating pair is strictly smaller. (In

Section 3.1, we show that Compensation implies Monotonicity and Additivity)

Given our discussion so far it should be clear that Compensation is a necessary con-
dition for > to have a response-time representation. The main result of our paper is that

Compensation is sufficient as well:

Theorem 1. > satisfies Compensation if and only if > admils a response time repre-

sentation.

Remark. Monotonicity and Additivity are sufficient to characterize response time repre-
sentations under a richness assumption. We present this result below in 3.1. For finite

data, however, Compensation is the characterizing property.

Proof of Theorem 1: Let T be the set of t € R, for which there is z,y € X such that

(x,y,t) €=. So we write t(x,y) to mean the t € R such that (z,y,t) €>.

Define first a matrix A which has |X| + T columns in | > | rows. We arrange T'
columns in a way that the largest ¢ appears at the last column. (This arrangement is
made to capture the implication z >y = wu(z) > u(y). This will be clear later.) For

each triple (z,y,t) €= there is a row. In the row corresponding to (x,y,t) there are zeros



in every entry except for a 1 in the row for z, a —1 in the row for y, and a —1 in the row

for t. A looks as follows

x y t max T

(zyt)e- | O -+ 1 -« =1 --- 0 o --- =1 --.. 0

Consider the system A -wu = 0. If there are numbers solving the right hand side of
equation (3), then these define a solution u € RIXI*IT If, on the other hand, there is a

solution u € RXI*/71 to the system A -u = 0, then the vector u defines a solution to (3).

Define the matrix B as a matrix with |X| + |T'| columns and one row for every pair
(t,t") with t < ¢'. In the row corresponding to (t,t¢") with ¢ < ¢’ there are zeroes in every
entry except for a 1 in the column for ¢ and a —1 in the column for #'. In symbols, the

row corresponding to (¢,t') is 1, — 1. B looks as follows

x y t t max T

v 1O -~ 0 -+ 0 -+ 010 «+- 1 ««v =1 -+ 0

Then, the system B -u > 0 captures the requirement that f be strictly decreasing.

In third place, we have a matrix F that captures the requirement that f(max7") > 0.
The matrix E has a single row and |X| + T columns. It has zeroes everywhere except
for 1 in the last column. Note that since f is strictly decreasing and f(maxT) > 0, it

follows that f > 0. Therefore by equation (3), we have z >y = u(x) > u(y).

To sum up, there is a solution to system (3) and (2) if and only if there is a vector

u € RXIHITT that solves the following system of equations and linear inequalities

(S1): A-u=0, (B,E)-u>0.

The entries of A, B, and F are either 0, 1 or —1. By Lemma 3, then, there is such a

solution u to S1 if and only if there is no rational vector (6,7, \) that solves the system
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of equations and linear inequalities

(52): 0-A+n-B+X-E=0, (n,\) > 0.

Suppose that there is no solution v of S1. Then, there exists a rational vector (6,7, \)
that solves the above system of equations and linear inequalities. By multiplying (6,7, A)
by any positive integer we obtain new vectors that solve S2, so we can take (6,7, A) to be
integer vectors. We transform the matrices A using 6 and 7. Define a matrix A* from A
by letting A* have the same number of columns as A and including: (i) 6, copies of the
rth row when 6, > 0; (ii) omitting row r when 6, = 0; and (iii) 6, copies of the rth row
multiplied by —1 when 6, < 0. We refer to rows that are copies of some r with 6, > 0 as

ortginal rows, and to those that are copies of some r with 6, < 0 as converted rows.

Similarly, we define the matrix B* from B by including the same columns as B and

N, copies of each row (and thus omitting row r when 7, = 0; recall that n, > 0 for all r).

Henceforth, we use the following notational convention: For a matrix D with | X |+|T|
columns, write D; for the submatrix of D corresponding to the first | X| columns; let Dy

be T column. Thus, D = [D;|Ds)].

Then, Af + B + A\E; = 0 for each @ = 1,2. Moreover, Bf = 0 = E}, Hence, we obtain
A% =0 and A5+ B = —\E, < 0. The rows of B* are vectors in {—1,0, 1}XI*7 that we
can write as 1, — 1y with t < #’. We can assume without loss of generality that if there
is a row associated with (¢,¢’), then there is no row associated with (¢”,t) (i.e. t” <) or
with (#,t") (i.e., ' <t”). The reason that this is without loss is the following. Say that

there are two rows associated with (¢,¢') and (¢',¢”). Then the sum of the rows will give
(1,5 - 1t/) + (]_tl - 1t”) = 1t - 1t”'

Then the matrix B* can be replaced with a matrix which omits the rows for (¢,¢) and

(¢’,t") and includes instead a row for (¢, ¢”) while preserving the property that A5+ B3 < 0.

The matrix A} defines a graph (X, F') in which F' is a multiset. The matrix A* is the

incidence matrix of the graph (X, F'); note that there is a edge (z,y) in this graph only
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if z = y or y > z. By the Poincare-Veblen-Alexandre theorem, since the sum of the rows
of A* is zero, the graph can be decomposed into a collection of cycles (', ..., Ck: each

cycle C* is a sequence ()", with ¥ = 2f. Each pair (], zf,,) corresponds to a row
r(zf, xf, ;) of A*; the function r is one-to-one and onto between the edges in F and the

rows of A*.

The rows of A are identified with a triple (z,y,t) €>. For each (x,y) there is at most
one row associated to (z,y,t(z,y)). So we identify each row r with the corresponding

pair (z,y), and write ¢(r) for t(z,y).

Suppose first that there are no reversed rows in A*. Then the cycle C! implies a
violation of Compensation, as it admits the null compensation and the null compensation

is not a covering. Suppose then that there is at least one reversed row.

Lemma 1. For each k € K, for each original row r(z¥, xfﬂ) of C*, there is a reversed
row w(r(zf,zf, ) of A* with t(r(r(z}, x},,))) < t(r(z},a),,)). The function m is one-

to-one.

Proof. If the row r(z}, z},,) is reversed, then in the column for t* = t(zf, zf,,) there is
a 1 in row r(zf,zf, ;). Then, A5+ Bj <0 means that in the column for ¢* there is some
row p of A* or of B* in which the entry in the column for ¢* is —1. There are two cases

to consider.

Case 1: Firstly, if row p is in A*, then p must be an original row because its entry in

column ¢* is —1. Let m(r(z},z},,)) be equal to p. We have

tr(r(z), o)) =t = t(r(ar, 21}1))-

Case 2: Secondly, if row p is in B* then p corresponds to some pair (¢,t*) with ¢ < ¢*.
The reason is that there is a —1 in row p and column t*, and hence p = 1, — 14+ for some
t < t*. Moreover, by the assumption, there is no row (¢',t). Therefore there is a 1 in the

column for ¢ and row p in B*, and no —1 in the column for ¢ in B*. Then, A5 + B; <0

11



implies that there is a row p in A* for which the column for ¢t has a —1. The row p must

then be original. Let m(r(z}, 2}, ,)) = p. Note that ¢ = ¢(p) < t*. We have

tr (), o)) <t = t(r(ar, 21}0))- (4)

In this way, we have assigned r(z}, z},,) to w(r(zf,zf,;)). In order to proceed, we
define A*(1) and B*(1) by deleting the rows used above from A* and B*. In particular,
in Case 1, we delete r(zf,z} ) and n(r(zf,z} ) from A* to define A*(1). We define
B*(1) = B*. In Case 2, we delete r(z}, 2}, ;) and 7(r(z}, 2}, )) from A* in order to define
A*(1). From B*, we delete the row p which corresponds to the pair (¢,t*) in order to
define B*(1). Note that in either case, the sum of deleted rows in the last |T| columns is

zero. Since A} + Bj < 0, it follows that A5(1) + B;(1) < 0.

Now with A*(1) and B*(1), we proceed to define the function 7: we choose a reversed
row from A*(1) and assign an original row exactly in the same way above. After deleting
the corresponding rows, we obtains matrices A*(2) and B*(2) by the same procedure that
produced A*(1) and B*(2). We keep this construction until we exhaust all rows in A*.
This ensures that the function 7 is one-to-one because when a row is selected to be the
image of 7 it is deleted from the corresponding matrix, and unavailable for assignment
in the rest of the process. The process must ends after a finite number of steps, say n,

because the number of rows in A* is finite. O

To finish the proof, we need to show the following.

Suppose that the process of the deletion at the end of the proof of Lemma 1 ends
after n steps. Now consider matrices A*(n) and B*(n). To finish the proof, it suffices to
show the following lemma because it will exhibit a compensation that is not a covering.

Lemma 2. (i) m is not onto; or (i) there exists an original row r(x},x} ;) such that

b (r(af, 7)) < Hr(af, o).

Proof. There are two cases to consider. The first case is when A > 0; the second case is

when A = 0.
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Case 1: Consider the case A > 0. Since Aj(n) + Bjs(n) + AE2 = 0 and the last column

of Ey is 1, there must be a row p in Aj(n) or in Bj(n) which has —1 at the last column.

Subcase 1.1: p is in Aj(n). Then the row is an original row. Since the row is in A}(n)

(and not deleted), p & range 7. This completes the proof.

Subcase 1.2: pisin Bj(n). Then p corresponds to some pair (¢, max7") with ¢ < max 7.
The reason is that there is a —1 in row p and column max 7', and hence p = 1; — lpaxr
for some ¢t < maxT. Moreover, by the assumption, there is no row (t',t). Therefore,
there is a 1 in the column for ¢ and row p in B*(n), and no —1 in the column for ¢ in
B*(n). Then, Aj(n) + Bj(n) < 0 implies that there is a row p in A*(n) for which the
column for ¢ has a —1. The row p must then be original. Since the row is in A%(n) (and

not deleted), p & range 7. So, 7 is not onto. This completes the proof for the first case.

Case 2: Consider the case A = 0. Since (1, \) > 0, then n > 0. So B* is not zero. Hence,
there must be Case 2 in Lemma 1. Therefore, (4) holds. There exists an original row
r(af, xf, ;) such that ¢(7(r(zf, 2} ))) < t(r(zf,zf)). This completes the proof for the
second case. O

To finish the proof of Theorem 1, consider the collection {(z¥)7* }5 | of cycles ob-
tained above. Notice that for each i and k, (zF, zF, |, t(2F,2F, ) is an original row when

k

k ko ok p(ok - koo ok -
°,and (z7,,, 27, t(x7 ., 27)) is a reversed row when 7 > x7 ;. Notice also that

77

Ty -
the function 7 obtained in Lemma 1 is a compensation that is not a covering. Thus we

obtain a violation of Compensation.

3.1 Rich Data—Uniqueness

In this section, we obtain an identification result by assuming “rich” datasets. We assume
axioms that capture the richness of the dataset, as well as Monotonicity and Additivity,

two axioms that we discussed at length in Section 3.
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The primitive relation is the same as in the previous section: »C X x X x Ry. The

set X may no longer be finite. We require a standard axiom.

Axiom 4. (Weak Order): = on X is asymmetric and negatively transitive.

Our next two axioms impose Richness of our domain.
Axiom 5. (Richness): If t(z,y) < t(z',y'), then there exist z,w € X such that t(z,z) =
t(z',y') = t(w,y).
Axiom 6. (Archimedean): For any z,y,z,w € X such that x = y and z > w, there
exist x1,...,x, € X such that x;11 = x;, t(xi1,2;) = t(x,y) for all i < n—1, and
t(z,w) > t(zn, x1).
Theorem 2. >~ satisfies Weak Order, Monotonicity, Additivity, Richness, and Archime-

dian if and only if = admits a response time representation.

Moreover, if = has two different representation (u, f) and (v, g), then there exists a
positive number o and a real number 5 such that uw = av + f and f(d) = g(ad) for all
d € domf.

Proof of Theorem 2: For all (z,y), (z,d) €, define

(x,y) ' (z,w) if and only if t(z,y) < t(z,w).

By definition 7=/ is complete and transitive relation on >. We will show the following

properties of 77/

Claim: (i) if x > y,y > 2, and & = z, then (z,z) 7=/ (z,y) and (x, 2) =’ (y, 2);

(i) if (z,y) =’ (2',y') and (y,2) =’ (v, 2), then (z,2) =/ (2, 2');

(iii) if (z,y) > (z,w), then there exist w’, w"” € A such that (z,w’) ~' (z,w) ~" (", y);
(iv) for any sequence x1, sy, -+ € A, if x;01 = x4, (xi41,2;) ~ (22, 21) for all 4, and there

exists (y, z) €> such that for all 4, (y, z) >’ (x;, 21), then the sequence is finite.

Proof. Note that (i) follows from Monotonicity. (ii) follows from Additivity. (iii) follows

from Richness. To see that (iv) follows from Archimedean, suppose (iv) does not hold.
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Then, there exists an infinite sequence {z;}3°;, C X and (z,w) €> such that x;;; > z;,

t(Tig1, ;) = t(xg, x1) for all 4, and t(z, w) < t(z;, z1) for all i.

By Archimedean, on the other hand, there exists a sequence {y;}"; C X such that

Yirr = Vi WYir1,vi) = t(xe, 1) for all i, and t(z,w) > t(yn,y1). Since t(yir1,y:) =
t(zg, 1) = t(xir1,2;) for all 4, by using Additivity repeatedly, we obtain t(x,,x;) =
t(Yn, y1). Hence, t(z,w) < t(z,, 1) = t(Yn,y1) < t(z,w), which is a contradiction. O

By Claim, Theorem 3 (Krantz et al. (1971), p147) shows that there exists a function
¢ : X — R such that (x,y) 7=/ (z,w) if and only if ¢(z) — (y) > ¢(z) — ¢(w). Moreover,
if there exists another ¢ satisfies the condition, then there exists a positive number «
and a real number (3 such that ¢’ = a¢p+ . (See Appendix B for the complete statement
of the theorem by Krantz et al. (1971).)

For all x € X, define

For all z,y € X such that x > y, define

9(t(x,y)) = o(x) — d(y).

Then we have g(t(x,y)) = u(z) — u(y).

To show that g is strictly decreasing, choose any s,s’ € domg. Then, there exist
z,y, 2,y € X such that s = t(x,y) and s’ = t(2',y’). Then,
s>s < tlx,y) >t y)
& (@) 2 (zy
& o) — oY) = o(x) — ¢(y)
& g(
& g(s) = g(s).
So g is strictly decreasing, hence ¢! exists. Define f = g~!. Then f is strictly decreasing

and t(z,y) = g7 (¢(z) — ¢(y)) = f(u(@) — u(y)). W
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Remark: Compensation implies Monotonicity and Additivity.

Proof of Remark: To show Monotonicity, suppose by contradiction that = > y,y >
z,x = z and t(z,z) > min{t(x,y),t(y, z)}. Consider the case, t(z,z) > t(z,y). Consider
a comparable cycle (z,y,x,z). Since z < y < x > z, there is only one worsening (z, z).
(Here, we are abusing notation <. For any z,y € X, by z < y, we mean y > x. We
will abuse the notation in the following.) So we can define a one-to-one function 7 by
7(x,z) = (z,y). Since t(z, z) > t(x,y), 7 is a compensation function and not onto, which

contradicts Compensation.

Consider the case, t(x,z) > t(y,z). Consider a comparable cycle (y,z,z,y). Since
y < x = z < y, in the comparable cycle, there is only one worsening (x,z). So we
can define a one-to-one function 7 by 7(z,2) = (z,y). Since t(z,z) > t(y,z), 7 is a
compensation function and not onto, which contradicts Compensation. So Monotonicity

is satisfied.

To show Additivity, suppose by contradiction that ¢(x,y) < t(z', ), t(y, z) < t(y, 2'),

and t(z,z) > t(2',2'). Wehave x > z <y <z and 2’ >y <2 <2
Consider two cases:
Case 1: x > z/. Consider a comparable cycle:
=y =< <r=2<y<x=2a.

We can define a one to one function 7 as follows: w(2',y") = (y,z), 7(v,2') = (z,v),
m(z,z) = (¢,2'), and 7(z,2") = (2/, ). This function is compensation function. Since

t(z,y) <t@,y), t(y,z) <t(y,2), and t(z,z) > t(a’, 2’), this contradicts Compensation.
Case 2: 2/ = x. Consider a comparable cycle:
z=y<z=<2 =y =<2 =x>z

We can define a one to one function 7 as follows: w(2',y") = (y,z), 7(v,2') = (z,v),

m(x,z) = (¢,2'), and w(2’,x) = (x,2’). This function is compensation function. Since

16



t(z,y) <t@',y), t(y,z) < t(y,2), and t(z, z) > t(a’, 2’), this contradicts Compensation.
|
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Appendix A Appendix: Theorem of the Alternative

We make use of the following version of the theorem of the alternative. See Lemma 12
in Chambers and Echenique (2011). It has solutions over the real field in the primal

system, and over the rational field in the dual.

Lemma 3. Let A be an m X n matriz, B be an | X n matriz, and E be an r X n matriz.
Suppose that the entries of the matrices A, B, and E are rational numbers. Ezxactly one

of the following alternatives is true.

1. There isu € R" such that A-u=0, B-u>0, and E-u > 0.

2. Thereis 0 € Q", ne Q!, andm € Q™ such that 0 -A+n-B+7-E=0; 7 >0
and n > 0.

Appendix B Appendix: Theorem in Krantz et al.
(1971)

Theorem 3. Let A be a nonempty set, A* be a nonempty subset of A x A, and -, be a

binary relation on A*. Suppose that

e =~ is complete and transitive,

If ab,bc € A*, then ac € A*,

If ab,bc € A*, then ac > ab, be,

If ab 7z abl, be Z U'c, then ac 7, a'd,

If ab = cd, there exists d',d" € A such that ad’ ~ c¢d ~ d"b,

For any sequence {a;}, if aj11a; ~ asay for all i and there exist d'd” = a;ay for all

i, then the sequence is finite.
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Then, there exists ¢ : A* — R such that

ab Z cd < ¢(a) — ¢(b) = ¢(c) — ¢(d)

Moreover, if ¢' satisfies the above equivalence, then there exists a positive number o and

real number 3 such that ¢ = ad’ + 3
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