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Abstract

We propose a new measure of deviations from expected utility, given data on

economic choices under risk and uncertainty. In a revealed preference setup,

and given a positive number e, we provide a characterization of the datasets

whose deviation (in beliefs, utility, or perceived prices) is within e of expected

utility theory. The number e can then be used as a distance to the theory.

We apply our methodology to three recent large-scale experiments. Many

subjects in those experiments are consistent with utility maximization, but

not expected utility maximization. The correlation of our measure with de-

mographics is also interesting, and provides new and intuitive findings on

expected utility.
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1 Introduction

Revealed preference theory started out as an investigation into the empirical content of

utility maximization, but more recently has turned to the empirical content of specific

utility theories. The leading example is expected utility: recent theoretical work seeks to

characterize the choice behaviors that are consistent with expected utility maximization.

At the same time, a number of empirical papers carry out revealed preference tests

on data of choices under risk and uncertainty. We seek to bridge the gap between the

theoretical understanding of expected utility theory, and the machinery needed to analyze

experimental data on choices under risk and uncertainty.1

Imagine an agent making economic decisions, choosing contingent consumption given

market prices and income. A long tradition in revealed preference theory studies the

consistency of such choices with utility maximization, and a more recent literature has

investigated consistency with expected utility theory (EU). 2 Consistency, however, is a

black or white question. The choices are either consistent with EU or they are not. Our

contribution is to describe the degree to which choices are consistent with EU.

Revealed preference theory has developed measures of how far choices are from being

compatible with general utility maximization. The most widely used measure is the

Critical Cost Efficiency Index (CCEI) proposed by Afriat (1972). Varian (1990) proposes

a modification, and Echenique et al. (2011) propose an alternative measure. 3 Such

measures are designed to gauge the distance between choices that cannot be rationalized

by any utility function, and choices for which there exists some utility function that could

explain them. They are not designed to measure consistency with EU.

The CCEI has been widely used to analyze experimental data, including data that

involves choice under risk and uncertainty. See, for example, Ahn et al. (2014), Choi et al.

(2007), Choi et al. (2014), Carvalho et al. (2016), and Carvalho and Silverman (2017).

These studies involve agents making decisions under risk or uncertainty, but the authors

have not had tools to investigate consistency with EU, the most commonly used theory

1We analyze objective expected utility theory for choice under risk and subjective expected utility

theory for choice under uncertainty.
2 The seminal papers include Samuelson (1938), Afriat (1967) and Varian (1982) (see Chambers and

Echenique (2016) for an exposition). The work on EU includes Green and Srivastava (1986), Kubler

et al. (2014), and Echenique and Saito (2015).
3Dziewulski (2018) provides a foundation for CCEI based on the model in Dziewulski (2016), which

seeks to rationalize violations of utility-maximizing behavior with a model of just-noticeable differences.
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to explain choices under risk or uncertainty. The purpose of our paper is to provide such

a tool.

Of course, there is nothing wrong with studying general utility maximization in envi-

ronments with risk and uncertainty, but it is surely also of interest to use the same data

to look at EU. After a theoretical discussion of our measure (Sections 3 and 5), we carry

out an empirical implementation of our proposals to data from the last three of the cited

papers (Section 4). 4

Our empirical application has two purposes. The first is to illustrate how our method

can be applied. The second is to a give a new use to existing data. We use data

from three large-scale experiments (Choi et al., 2014; Carvalho et al., 2016; Carvalho

and Silverman, 2017), each with over 1,000 subjects, that involves choices under risk.

Given our methodology, the data can be used to test expected utility theory, not only

general utility maximization. The main take aways from our empirical application are

as follows. a) The data confirm that CCEI is not a good indication of compliance with

EU. Among agents with high CCEI, who seem to be close to consistent with utility

maximization, our measure of closeness to EU is very dispersed. b) Correlation between

closeness to EU and demographic characteristics yields interesting results. We find that

younger subjects, those who have high cognitive abilities, and those who are working,

are closer to EU behavior than older, low ability, or passive, subjects. For some of the

three experiments, we also find that highly educated, high-income subjects, and males,

are closer to EU.

In the rest of the introduction, we lay out the argument for why CCEI is inadequate

to measure deviations from EU.

The CCEI is meant to test deviations from general utility maximization. If an agent’s

behavior is not consistent with utility maximization, then it cannot possibly be consistent

with expected utility maximization. It stands to reason that if an agent’s behavior is far

from being rationalizable with a general utility function, as measured by CCEI, then it

is also far from being rationalizable with an expected utility function. The problem is, of

course, that an agent may be rationalizable with a general utility function but not with

an expected utility function.

Broadly speaking, the CCEI proceeds by “amending” inconsistent choices through

4These papers involve choices under risk, with given probabilities, and therefore represent a natural

unit of analysis.
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Figure 1: (A) A violation of WARP. (B) A violation of the expected utility theory:
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a
2. (C) A pattern of choices consistent with EU.

the devise of changing income. This works for general utility maximization, but it is

the wrong way to amend choices that are inconsistent with EU: EU is about getting

the marginal rates of substitution right, so prices need to be changed, not incomes.

The problem is illustrated with a simple example in Figure 1. Suppose that there are

two states of the world, labeled 1 and 2. An agent purchases a state-contingent asset

x = (x1, x2), given Arrow-Debreu prices p = (p1, p2) and her income. Prices and incomes

define a budget set. In panel A of Figure 1 we are given two choices for the agent, xa

and xb, for two different budgets. The choices in panel A of Figure 1 are inconsistent

with utility maximization: they violate the weak axiom of revealed preference (WARP).

When xb (xa) was chosen, xa (xb, respectively) was strictly inside of the budget set. This

violation of WARP can be resolved by shifting down the budget line associated with

choice xb below the dotted green line passing through xa. Alternatively, the violation

can be resolved by shifting down the budget line associated with choice xa below the

dotted blue line passing through xb. Afriat’s CCEI is the smallest of the two shifts that

are needed: the smallest proportion of shifting down a budget line to resolve WARP

violation. Therefore, the CCEI of this dataset corresponds to the dotted green line

passing through xa. That is, the CCEI is (pb · xa)/(pb · xb).

Now consider the example in panel B of Figure 1. There are again two choices made

by a subject, xa and xb, for two different budgets. These choices do not violate WARP,

and CCEI indicates perfect compliance with the theory of utility maximization. The

choices in the panel are not, however, compatible with EU. To see why, assume that

the dataset were rationalized by an expected utility: µ1u(xk1) + µ2u(xk2), where (µ1, µ2)

are the probabilities of the two states, and u is a (smooth) concave utility function over

money. Note that the slope of a tangent line to the indifference curve at a point xk is
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equal to the marginal rate of substitution (MRS): µ1u
′(xk1)/µ2u

′(xk2). Moreover, at the

45-degree line (i.e., when xk1 = xk2), the slope must be equal to µ1��
��u′(xk1)/µ2��

��u′(xk2) = µ1/µ2.

This is a contradiction because in Figure 1 panel B, the two tangent lines (green dotted

lines) associated with xa and xb cross each other. In contrast with panel B, the figure in

panel C shows choices that are consistent with EU. Tangent lines at the 45-degree line

are parallel in this case.

Importantly, the violation in panel B cannot be resolved by shifting budget lines

up or down, or more generally by adjusting agents’ expenditures. The reason is that the

empirical content of expected utility is captured by the relation between prices and marginal

rates of substitution. The slope, not the level, of the budget line is what matters.

Our contribution is to propose a measure of how close a dataset is to being consistent

with expected utility maximization. Our measure is based on the idea that marginal

rates of substitution have to conform to expected utility maximization. If one “perturbs”

marginal utility enough, then a dataset is always consistent with expected utility. Our

measure is simply a measure of how large of a perturbation is needed to rationalize

a dataset. Perturbations of marginal utility can be interpreted in three different, but

equivalent, ways: as measurement error on prices, as random shocks to marginal utility

in the spirit of random utility theory, or as perturbations to agents’ beliefs. For example,

if the data in panel B of Figure 1 is e away from being consistent with expected utility,

then one can find beliefs µa and µb, one for each observation, so that expected utility

is maximized for these observation-specific beliefs, and such that the data is consistent

with such perturbed beliefs.

Our measure can be applied in settings where probabilities are known and objective,

for which we develop a theory in Section 3, and an application to experimental data

in Section 4. It can also be applied to settings where probabilities are not known, and

therefore subjective (see Section 5).

Finally, we propose a statistical methodology for testing the null hypothesis of con-

sistency with EU. Our test relies on a set of auxiliary assumptions: the methodology

is developed in Section 4.3. The test indicates moderate levels of rejection of the EU

hypothesis.

5



2 Model

Let S be a finite set of states. We occasionally use S to denote the number |S| of states.

Let ∆++(S) = {µ ∈ RS
++ |

∑S
s=1 µs = 1} denote the set of strictly positive probability

measures on S. In our model, the objects of choice are state-contingent monetary payoffs,

or monetary acts. A monetary act is a vector in RS
+.

Definition 1. A dataset is a finite collection of pairs (x, p) ∈ RS
+ ×RS

++.

The interpretation of a dataset (xk, pk)Kk=1 is that it describes K purchases of a state-

contingent payoff xk at some given vector of prices pk, and income pk · xk.

For any prices p ∈ RS
++ and positive number I > 0, the set

B(p, I) = {y ∈ RS
+ | p · y ≤ I}

is the budget set defined by p and I.

Expected utility theory requires a decision maker to solve the problem

max
x∈B(p,I)

∑
s∈S

µsu(xs) (1)

when faced with prices p ∈ RS
++ and income I > 0, where µ ∈ ∆++(S) is a belief and u

is a concave utility function over money. We are interested in concave u; an assumption

that corresponds to risk aversion.

The belief µ will have two interpretations in our model. First, in Section 3, we

shall focus on decisions taken under risk. The belief µ will be a known “objective”

probability measure µ∗ ∈ ∆++(S). Then, in Section 5, we study choice under uncertainty.

Consequently, The belief µ will be a subjective beliefs, which is unobservable to us as

outside observers.

When imposed on a dataset, expected utility maximization (1) may be too demanding.

We are interested in situations where the model in (1) holds approximately. As a result,

we shall relax (1) by “perturbing” some elements of the model. The exercise will be to

see if a dataset is consistent with the model in which some elements have been perturbed.

Specifically, we shall perturb beliefs, utilities or prices.

First, consider a perturbation of utility u. We allow u to depend on the choice problem

k and the realization of the state s. We suppose that the utility of consumption xs in

6



state s is given by εksu(xs), with εks being a (multiplicative) perturbation in utility. To

sum up, given price p and income I, a decision maker solves the problem

max
x∈B(p,I)

∑
s∈S

µsε
k
su(xs) (2)

when faced with prices p ∈ RS
++ and income I > 0. Here {εks} is a set of perturbations,

and u is, as before, a concave utility function over money.

In the second place, consider a perturbation of beliefs. We allow µ to be different for

each choice problem k. That is, given price p and income I, a decision maker solves the

problem

max
x∈B(p,I)

∑
s∈S

µksu(xs) (3)

when faced with prices p ∈ RS
++ and income I > 0, where {µk} ⊂ ∆++(S) is a set of

beliefs and u is a concave utility function over money.

Finally, consider a perturbation of prices. Our consumer faces perturbed prices p̃ks =

εksp
k
s , with a perturbation εks that depends on the choice problem k and the state s. Given

price p and income I, a decision maker solves the problem

max
x∈B(p̃,I)

∑
s∈S

µsu(xs), (4)

when faced with income I > 0 and the perturbed prices p̃ks = εksp
k
s for each k ∈ K and

s ∈ S.

Observe that our three sources of perturbations have different interpretations. Per-

turbed prices can be thought of a prices subject to measurement error. Perturbed utility

is an instance of random utility models. Finally, perturbations of beliefs can be thought

of as a kind of random utility, or as an inability to exactly use probabilities.

3 Perturbed Objective Expected Utility

In this section we treat the problem under risk: there exists a known “objective” belief

µ∗ ∈ ∆++(S) that determines the realization of states.

As mentioned above, we go through each of the sources of perturbation: beliefs,

utility and prices. We seek to understand how large a perturbation has to be in order to

rationalize a dataset. It turns out that, for this purpose, all sources of perturbations are

equivalent.
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3.1 Belief Perturbation

We allow the decision maker to have a belief µk for each choice k. We seek to understand

how much the belief µk deviates from the objective belief µ∗ by evaluating how far the

ratio,
µks/µ

k
t

µ∗s/µ
∗
t

,

where s 6= t, differs from 1. If the ratio is larger (smaller) than one, then it means that

in choice k, the decision maker believes the relative likelihood of state s with respect to

state t is larger (smaller, respectively) than what he should believe, given the objective

belief µ∗.

Given a nonnegative number e, we say that a dataset is e-belief-perturbed objective

expected utility (OEU) rational, if it can be rationalized using expected utility with

perturbed beliefs for which the relative likelihood ratios do not differ by more than e

from their objective equivalents. Formally:

Definition 2. Let e ∈ R+. A dataset (xk, pk)Kk=1 is e-belief-perturbed OEU rational if

there exist µk ∈ ∆++ for each k ∈ K, and a concave and strictly increasing function

u : R+ → R, such that, for all k,

y ∈ B(pk, pk · xk) =⇒
∑
s∈S

µksu(ys) ≤
∑
s∈S

µksu(xks). (5)

and for each k ∈ K and s, t ∈ S,

1

1 + e
≤ µks/µ

k
t

µ∗s/µ
∗
t

≤ 1 + e. (6)

When e = 0, e-belief-perturbed OEU rationality requires that µks = µ∗s, so the case of

exact consistency with expected utility is obtained with a zero bound of belief perturba-

tions. Moreover, it is easy to see that by taking e to be large enough, any data set can

be e-belief-perturbed rationalized.

We should note that e bounds belief perturbations for all states and observations. As

such, it is sensitive to extreme observations and outliers (the CCEI is also subject to this

critique: see Echenique et al. (2011)). In our empirical results, we carry our a robustness

analysis to account for such sensitivity: see Appendix D.2.

Finally, we mention a potential relationship with models of nonexpected utility. One

could think of rank-dependent utility, for example, as a way of allowing agent’s beliefs to
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adapt to his observed choices. However, unlike e-belief-perturbed OEU, the nonexpected

utility theory requires some consistencies on the dependency. For example, for the case

of rank dependent utility, the agent’s belief over the sates is affected by the ranking of

the outcomes across states.

3.2 Price Perturbation

We now turn to perturbed prices: think of them as prices measured with error. The

perturbation is a multiplicative noise term εks to the Arrow-Debreu state price pks . Thus,

perturbed state price are εksp
k
s . Note that if εks = εkt for all s, t, then introducing the noise

does not affect anything because it only changes the scale of prices. In other words, what

matters is how perturbations affect relative prices, that is εks/ε
k
t .

We can measure how much the noise εk perturbs relative prices by evaluating how

much the ratio,
εks
εkt
,

where s 6= t, differs from 1.

Definition 3. Let e ∈ R+. A dataset (xk, pk)Kk=1 is e-price-perturbed OEU rational if

there exists a concave and strictly increasing function u : R+ → R, and εk ∈ RS
+ for

each k ∈ K such that, for all k,

y ∈ B(p̃k, p̃k · xk) =⇒
∑
s∈S

µ∗su(ys) ≤
∑
s∈S

µ∗su(xks), (7)

where for each k ∈ K and s ∈ S
p̃ks = pksε

k
s
5 (8)

and for each k ∈ K and s, t ∈ S

1

1 + e
≤ εks
εkt
≤ 1 + e. (9)

The idea is illustrated in Figure 2 (panels A-D). The figure shows how the perturba-

tions to relative prices affect budget lines, under the assumption that |S| = 2. For each

value of e ∈ {0.1, 0.25, 0.5, 1} and k ∈ K, the blue area is the set {x ∈ RS
+ | x · p̃k =

xk · p̃k and (9)} of perturbed budget lines. The dataset in the figure is the same as in

panel B of Figure 1, which is not rationalizable with any expected utility function.

5It is without loss of generality to add an additional restriction that p̃k · xk = pk · xk for each k ∈ K
because what matters are the relative prices.
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Figure 2: (A-D) Illustration of perturbed budget sets with e ∈ {0.1, 0.25, 0.5, 1}. (E)

Example of price-perturbed expected utility rationalization.

Figure 2, panel E illustrates how we rationalize the dataset in panel B of Figure 1.

The blue bold lines are perturbed budget lines and the green bold curves are (fixed)

indifference curves passing through each of the xk in the data. Note that the indifference

curves have the same slope at the 45-degree line. The blue shaded areas are the sets of

perturbed budget lines bounded by e = 1. Perturbed budget lines needed to rationalize

the choices are indicated with blue bold lines. Since these are inside the shaded areas,

the dataset is price-perturbed OEU rational with e = 1.

3.3 Utility Perturbation

Finally, we turn to perturbed utility. As explained above, perturbations are multiplicative

and take the form εksu(xks). It is easy to see that this method is equivalent to belief

perturbation. As for price perturbations, we seek to measure how much the εk perturbs

utilities at choice problem k by evaluating how much the ratio,

εks
εkt
,

where s 6= t, differs from 1.

Definition 4. Let e ∈ R+. A dataset (xk, pk)Kk=1 is e-utility-perturbed OEU rational if

there exists a concave and strictly increasing function u : R+ → R and εk ∈ RS
+ for each

10



k ∈ K such that, for all k,

y ∈ B(pk, pk · xk) =⇒
∑
s∈S

µ∗sε
k
su(ys) ≤

∑
s∈S

µ∗sε
k
su(xks), (10)

and for each k ∈ K and s, t ∈ S

1

1 + e
≤ εks
εkt
≤ 1 + e. (11)

3.4 Equivalence of the Three Measures

The first observation we make is that the three sources of perturbations are equivalent,

in the sense that for any e a data set is e-perturbed rationalizable according to one of

the sources if and only if it is also rationalizable according to any of the other sources.

By virtue of this result, we can interpret our measure deviations from OEU in any of the

ways we have introduced.

Theorem 1. Let e ∈ R+, and D be a dataset. The following are equivalent:

• D is e-belief-perturbed OEU rational;

• D is e-price-perturbed OEU rational;

• D is e-utility-perturbed OEU rational.

In light of Theorem 1 we shall simply say that a data set is e-perturbed OEU rational

if it is e-belief-perturbed OEU rational, and this will be equivalent to being e-price-

perturbed OEU rational, and e-utility-perturbed OEU rational.

3.5 Characterizations

We proceed to give a characterization of the dataset that are e-perturbed OEU rational.

Specifically, given e ∈ R+, we propose a revealed preference axiom and prove that a

dataset satisfies the axiom if and only if it is e-perturbed OEU rational.

Before we state the axiom, we need to introduce some additional notation. In the

current model, where µ∗ is known and objective, what matters to an expected utility

maximizer is not the state price itself, but instead the risk-neutral price:
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Definition 5. For any dataset (pk, xk)Kk=1, the risk neutral price ρks ∈ RS
++ in choice

problem k at state s is defined by

ρks =
pks
µ∗s
.

As in Echenique and Saito (2015), the axiom we propose involves a sequence (xkisi , x
k′i
s′i

)ni=1

of pairs satisfying certain conditions.

Definition 6. A sequence of pairs (xkisi , x
k′i
s′i

)ni=1 ≡ σ is called a test sequence if

(1) xkisi > x
k′i
s′i

for all i;

(2) each k appears as ki (on the left of the pair) the same number of times it appears

as k′i (on the right).

Echenique and Saito (2015) provide an axiom, termed the Strong Axiom for Revealed

Objective Expected Utility (SAROEU), which states for any test sequence (xkisi , x
k′i
s′i

)ni=1,

we have
n∏
i=1

ρkisi

ρ
k′i
s′i

≤ 1. (12)

SAROEU is equivalent to the axiom provided by Kubler et al. (2014).

It is easy to see why SAROEU is necessary. Assuming (for simplicity of exposition)

that u is differentiable, the first order condition of the maximization problem (1) for

choice problem k

λkpks = µ∗su
′(xks), or equivalently, ρks =

u′(xks)

λk
,

where λk > 0 is a Lagrange multiplier.

By substituting this equation on the left hand side of (12), we have

n∏
i=1

ρkisi

ρ
k′i
s′i

=
n∏
i=1

λk
′
i

λki
·
n∏
i=1

u′(xkisi )

u′(x
k′i
s′i

)
≤ 1.

To see that this term is smaller than 1, note that the first term of the product of the

λ-ratios is equal to one because of the condition (2) of the test sequence: all λk must

cancel out. The second term of the product of u′-ratio is less than one because of the

concavity of u, and the condition (1) of the test sequence (i.e., u′(xkisi )/u
′(x

k′i
s′i

) ≤ 1). Thus

SAROEU is implied. It is more complicated to show that SAROEU is sufficient (see

Echenique and Saito (2015) for details).
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Now, e-perturbed OEU rationality allows the decision maker to use different beliefs

µk ∈ ∆++(S) for each choice problem k. Consequently, SAROEU is not necessary for

e-perturbed OEU rationality. To see that SAROEU can be violated, note that the first

order condition of the maximization (3) for choice k is as follows: there exists a positive

number (Lagrange multiplier) λk such that for each s ∈ S,

λkpks = µksu
′(xks), or equivalently, ρks =

µks
µ∗s

u′(xks)

λk
.

Suppose that xks > xkt . Then (xks , x
k
t ) is a test sequence (of length one). We have

ρks
ρkt

=

(
µks
µ∗s

u′(xks)

λk

)/(
µkt
µ∗t

u′(xkt )

λk

)
=
u′(xks)

u′(xkt )

µks/µ
k
t

µ∗s/µ
∗
t

.

Even though xks > xkt implies the first term of the ratio of u′ is less than one, the second

term can be strictly larger than one. When xks is close enough to xkt , the first term is

almost one; the second term is strictly larger than one. Consequently, SAROEU can be

violated.

However, by (6), we know that the second term is bounded by 1+e. So we must have

ρks
ρkt
≤ 1 + e.

In general, for a sequence (xkisi , x
k′i
s′i

)ni=1 of pairs, one may suspect that the bound is calcu-

lated as (1 + e)n. This is not true because if xks appears as both xkisi for some i and as

x
k′j
s′j

for some j, then all µks can be canceled out. What matters is the number of times xks

appears without being canceled out. The number can be defined as follows.

Definition 7. Consider any sequence (xkisi , x
k′i
s′i

)ni=1 of pairs. Let (xkisi , x
k′i
s′i

)ni=1 ≡ σ. For

any k ∈ K ands ∈ S,

d(σ, k, s) = #{i | xks = xkisi} −#{i | xks = x
k′i
s′i
}.

and

m(σ) =
∑
s∈S

∑
k∈K:d(σ,k,s)>0

d(σ, k, s).

Note that, if d(σ, k, s) is positive, then d(σ, k, s) is the number of times µks appears as

a numerator without being canceled out. If it is negative, then d(σ, k, s) is the number

of times µks appears as a denominator without being canceled out. So m(σ) is the “net”

13



number of terms such as µks/µ
k
t that are present in the numerator. Thus the relevant

bound is (1 + e)m(σ).

Given the discussion above, it is easy to see that the following axiom is necessary for

e-perturbed OEU rationality.

Axiom 1 (e-Perturbed Strong Axiom for Revealed Objective Expected Utility (e-PSAROEU)).

For any test sequence of pairs (xkisi , x
k′i
s′i

)ni=1 ≡ σ, we have

n∏
i=1

ρkisi

ρ
k′i
s′i

≤ (1 + e)m(σ).

The main result of this section is to show that the axiom is also sufficient.

Theorem 2. Given e ∈ R+, and D be a dataset. The following are equivalent:

• D is e-belief-perturbed OEU rational.

• D satisfies e-PSAROEU.

Axioms like e-PSAROEU can be interpreted as a statement about downward sloping

demand (see Echenique et al., 2016). For example (xks , x
k
s′) with xks > xks′ is a test

sequence. If risk neutral prices satisfy ρks > ρks′ , then the data violate downward sloping

demand. Now e-PSAROEU measures the extent of the violation by controlling the size

of ρks/ρ
k
s′ .

In its connection to downward sloping demand, Theorem 2 formalizes the idea of

testing OEU through the correlation of risk-neutral prices and quantities: see Friedman

et al. (2018) and our discussion in Section 4.2. Theorem 2 and the axiom e-PSAROEU

give the precise form that the downward sloping demand property takes in order to

characterize OEU, and provides a non-parametric justification to the practice of analyzing

the correlation of prices and quantities.

As mentioned, 0-PSAROEU is equivalent to SAROEU. When e =∞, the e-PSAROEU

always holds because (1 + e)m(σ) =∞.

Given a dataset, we shall calculate the smallest e for which the dataset satisfies e-

PSAROEU. It is easy to see that such a minimal level of e exists. 6 We explain in

Appendices B and C how it is calculated in practice.

6In Appendix B, we show that e∗ can be obtained as a solution of minimization of a continuous

function on a compact space. So the minimum exists.
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Definition 8. Minimal e, denoted e∗, is the smallest e′ ≥ 0 for which the data satisfies

e′-PSAROEU.

The number e∗ is a crucial component of our empirical analysis. Importantly, it is

the basis of a statistical procedure for testing the null hypothesis of OEU rationality.

As mentioned above, e∗ is a bound that has to hold across all observations, and

therefore may be sensitive to extreme outliers. It is, however, easy to check the sensitivity

of the calculated e∗ to an extreme observation. One can re-calculate e∗ after dropping

one or two observations, and look for large changes (Appendix D.2).

Finally, e∗ depends on the prices and the objective probability which a decision maker

faces. In particular, it is clear from e-PSAROEU that 1 + e is bounded by the maximum

ratio of risk-neutral prices (i.e., maxk,k′∈K,s,s′∈S ρ
k
s/ρ

k′

s′ ).

4 Testing (Objective) Expected Utility

We use our methods to test for perturbed OEU on datasets from three experiments im-

plemented through large-scale online surveys. The datasets are taken from Choi et al.

(2014), hereafter CKMS, Carvalho et al. (2016), hereafter CMW, and Carvalho and Sil-

verman (2017), hereafter CS. All of these experiments followed the experimental structure

introduced originally by Choi et al. (2007). 7

It is worth mentioning here that all three papers, CKMS, CMW, and CS, focus on

CCEI as a measure of violation of basic rationality. We shall instead look at the more

narrow model of OEU, and use e∗ as our measure of violations of the model. Our

procedure for calculating e∗ is explained in Appendices B and C.

4.1 Datasets

CKMS experiment Choi et al. (2014) used the CentERpanel, a stratified online

weekly survey of a sample of over 2,000 households and 5,000 individual members in the

7We focused on CKMS, CMW, and CS because they have much larger samples than Choi et al.

(2007), and collect sociodemographic variables. Choi et al. (2007) estimate a two-parameter utility

function based on Gul’s (1991) model of disappointment aversion. We report an analysis of Choi et al.’s

(2007) dataset in Appendix D.

15



0

25

50

75

100

0 25 50 75 100

Account 1

A
cc

ou
nt

 2

Figure 3: Sample budget lines. A set of 25 budgets from one real subject in Choi et al.

(2014).

Netherlands. They implemented experimental tasks using the panel’s survey instrument,

randomly recruiting subjects from the entire CentERpanel sample. Their experiment

was conducted with 1,182 CentERpanel adult members.

The instrument allowed them to collect a wide variety of individual demographic and

economic information from the subjects. The main sociodemographic information they

obtained include gender, age, education level, household monthly income, occupation,

and household composition. 8

In the experiment, subjects were presented with a sequence of decision problems under

risk in a graphical illustration of a two-dimensional budget line on the (x, y)-plane. They

were then asked to select a point, an “allocation,” by clicking on the budget line. The

coordinates of the selected point represent an allocation of points between accounts x

and y. They received the points allocated to one of the accounts, x or y, determined

at random with equal chance. They were presented a total of 25 budgets, which were

selected randomly from the set of budget lines (see Figure 3). The selection of budget

lines was independent across subjects, meaning that the subjects were give different sets

of budget lines.

We note some interpretations of the design that matter for our discussion later. First,

the points that lie on the 45-degree line correspond to equal allocations between the two

8Summary statistics of those key individual characteristics are reported in Table 1 in Choi et al.

(2014).
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Table 1: Sample size for each experiment.

Dataset CKMS CMW CS

Number of subjects 1,182 1,119 1,423

Number of budgets 25 25 25

accounts, and therefore involve no risk. The 45-degree line is the “full insurance” line.

Second, we can interpret the slope of a budget line as a price, in the usual sense: if the

y-intercept is larger than the x-intercept, points in the y account are “cheaper” than

those in the x account.

CMW experiment Carvalho et al. (2016) studied the effect of financial resources on

decision making using two internet panel surveys. In their study 2, they administered a

portfolio choice task and Choi et al. (2014). They fixed the set of 25 budgets, i.e., all

subjects in the survey faced the same set of budgets. A total of 1,119 subjects participated

in this study.

CS experiment Carvalho and Silverman (2017) studied the effects of the complexity

of financial decision making using the University of Southern California’s Understanding

America Study (UAS) panel. A portfolio choice task with 25 budgets was induced in

their baseline survey. A total of 1,423 subjects participated in this study.

4.2 Results

Summary statistics. We exclude five subjects whose e∗ is 0 (i.e., “exact” OEU ra-

tional). We calculate e∗ for the rest of the 3,719 subjects in the three experiments. The

distributions of e∗ are displayed in panel A of Figure 4.

The CKMS sample has a mean e∗ of 1.289, and a median of 1.316. The CMW subjects

have a mean of 1.189 and a median of 1.262, while the CS sample has a mean of 1.143

and a median of 1.128. 9

Recall that the smaller a subject’s e∗ is, the closer her choice data to OEU rationality.

Of course it is hard to exactly interpret the magnitude of e∗, a problem that we turn to

9Since e∗ depends on the design of set(s) of budgets, comparing e∗ across studies requires caution.
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Figure 4: Kernel density estimations of e∗ for all subjects (panel A) and for the subsample

of subjects whose CCEI = 1 (panel B).

in Section 4.3.

Downward sloping demand and e∗ Perturbations in beliefs, prices, or utility, seek

to accommodate a dataset so that it is OEU rationalizable. The accommodation can be

seen as correcting a mismatch of relative prices and marginal rates of substitution: recall

our discussion in the Introduction. Another way to see the accommodation is through

the relation between prices and quantities. Our revealed preference axiom, e-PSAROEU,

bounds certain deviations from downward sloping demand. The minimal e is therefore

a measure of the kinds of deviations from downward sloping demand that are crucial to

OEU rationality.

Figure 5 displays “typical” patterns of choices from subjects with large and small

values of e∗. The figure represents two selected subjects from our data. Panels A and C

plot the observed choices from the different budget lines, and panels B and D plot the

relation between log(x2/x1) and log(p2/p1). The idea in the latter plots is that, if a subject

properly responds to price changes, then as log(p2/p1) becomes higher, log(x2/x1) should

become lower. This relation is also the idea in e-PSAROEU. Therefore, panels B and D

in Figure 5 should have a negative slope for the subjects to be OEU rational.

Observe that both subjects in Figure 5 have CCEI = 1, and are therefore consistent

with utility maximization. The figure illustrates that the nature of OEU violations has

little to do with CCEI.

The subject’s choices in panel C are close to the 45-degree line. At first glance, such

choices might seem to be rationalizable by a very risk-averse expected utility function.

However, as panel D shows, the subject’s choices deviates from downward sloping de-
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Figure 5: Dataset with CCEI = 1 and low e∗ (panels AB) and high e∗ (panels CD).

mand, hence cannot be rationalized by any expected utility function. One might be able

to rationalize the choices made in panel C with certain symmetric models of errors in

choices (like, possibly, “trembling hand” errors), but not with the types of errors captured

by our model.

The observation in Figure 5 generalizes this idea. We calculate Pearson’s correlation

coefficient between log(x2/x1) and log(p2/p1) for each subject in the datasets. 10 Roughly

speaking, the correlation coefficient is negative if subjects exhibit downward sloping de-

mand. The correlation coefficient is close to zero if subjects’ are not responding to price

changes. Figure 6 illustrates the results. The top row of the figure confirms that e∗ and

the correlation between price and quantity, are positively related. This means that as e∗

becomes small, subjects tend to exhibit downward sloping demand. As e∗ becomes large,

subjects become insensitive to price changes. Across all datasets, CKMS, CMW and CS,

e∗ and downward sloping demand are positively related.

We should mention the practice by some authors, notably Friedman et al. (2018),

10Note that log(x2/x1) is not defined at the corners. We thus adjust corner choices by small constant,

0.1% of the budget in each choice, in calculation of the correlation coefficient.
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Panels: (A) CKMS, (B) CMW, (C) CS.

to evaluate compliance with OEU by looking at the correlation between risk-neutral

prices and quantities. Our measure is clearly related to that idea, and the empirical

results presented in this section can be read as a validation of the correlational approach.

Friedman et al. (2018) use their approach to estimate a parametric functional form, using

experimental data in which they vary objective probabilities, not just prices. 11 Our

approach is non-parametric, and focused on testing OEU, not estimating any particular

utility specification.

The bottom row of Figure 6 illustrates the relation between CCEI and the correlation

between price and quantity. The relation is not monotonic. Agents who are closer

to complying with utility maximization do not display a stronger correlation between

prices and quantities. The finding is consistent with our comment about CCEI and OEU

rationality: CCEI measures the distance from utility maximization, which is related to

parallel shifts in budget lines, while e∗ and OEU are about the slope of the budget lines,

and about a negative relation between quantities and prices. Hence, e∗ reflects better

11For the datasets we use, where probabilities are always fixed, the results we report in Figure 5 are

analogous to what Friedman et al. (2018) report in their Figure 6. The regression coefficients in their

Table 2 are proportional to our estimated correlation coefficients (since beliefs are constant).
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Figure 7: Correlation between e∗ and CCEI from (A) CKMS, (B) CMW, and (C) CS.

than CCEI the characterizing properties of OEU.

We should mention that the non-monotonic relation between CCEI and the correlation

coefficient seems to be partially driven by subjects who have CCEI = 1. There are 270

(22.8%) subjects whose CCEI scores equal to 1 in CKMS sample, 210 (18.5%) in CMW

sample, and 315 (22.0%) in CS sample, respectively. Omitting such subjects weakens the

non-monotone relationship. The dotted curves in the bottom row of Figure 6 look at the

relation between CCEI and the correlation coefficient excluding subjects with CCEI = 1.

These curves also have non-monotonic relation, but they (i) exhibit negative relation on

a wider range of the x-axis, and (ii) have wider confidence bands when the correlation

coefficient is positive (fewer observations).

We next turn to a direct comparison of e∗ and CCEI in our data.

Relationship between e∗ and CCEI. Comparing e∗ and CCEI, we find that CCEI

is not a good indication of the distance to OEU rationality. To reiterate a point we

have already made, this should not be surprising as CCEI is meant to test general utility

maximization, and not OEU. Nevertheless, it is interesting to see and quantify the relation

between these measures in the data.

In panel B of Figure 4, we show the distribution of e∗ among subjects whose CCEI

is equal to one, which varies as much as in panel A. Many subjects have CCEI equal to

one, but their e∗’s are far from zero. This means that consistency with general utility

maximization is not necessarily a good indication of consistency with OEU.

That said, the measures are clearly correlated. Figure 7 plots the relation between

CCEI and e∗. As we expect from their definitions (larger CCEI and smaller e∗ correspond

to higher consistency), there is a negative and significant relation between them (Pear-
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son’s correlation coefficient: r = −0.2573, p < 10−15 for CKMS; r = −0.2419, p < 10−15

for CMW; r = −0.3458, p < 10−15 for CS).

Notice that the variability of the CCEI scores widens as the e∗ becomes larger. Ob-

viously, subjects with a small e∗ are close to being consistent with general utility maxi-

mization, and therefore have a CCEI that is close to 1. However, subjects with large e∗

seem to have disperse values of CCEI.

Correlation with demographic variables. We investigate the correlation between

our measure of consistency with expected utility, e∗, and various demographic variables

available in the data. The exercise is analogous to CKMS’s findings using CCEI.

We find that younger subjects, those who have high cognitive abilities, and those who

are working, are closer to being consistent with OEU than older, low ability, or passive,

subjects. For some of the three experiments we also find that highly educated, high-

income subjects, and males, are closer to OEU. Figure 8 summarizes the mean e∗ along

with 95% confidence intervals across several socioeconomic categories. 12 We use the

same categorization as in Choi et al. (2014) to compare our results with their Figure 3.

We observe statistically significant (at a 5% level) gender differences in CMW (two-

sample t-test, t(1114) = −2.2074, p = 0.0275) and CS (two-sample t-test, t(1418) =

−4.4620, p = 8.76 × 10−6), but not in CKMS (two-sample t-test, t(1180) = −0.8703,

p = 0.3843). Male subjects were on average closer to OEU rationality than female

subjects in the CMW and CS samples (panel A).

We find significant age effects as well. Panel B shows that younger subjects are

on average closer to OEU rationality than older subjects (the comparison between age

groups 16-34 and 65+ reveals statistically significant difference in all three datasets; all

two-sample t-tests give p < 10−5).

We observe weak effects of education on e∗ (panel C). 13 Subjects with higher educa-

tion are on average closer to OEU rationality than those with lower education in CKMS

(two-sample t-test, t(829) = 4.1989, p < 10−4), but the difference is not significant in

12Figure D.13 in Appendix D shows correlation between CCEI and demographic variables.
13The low, medium, and high education levels correspond to primary or prevocational secondary

education, pre-university secondary education or senior vocational training, and vocational college or

university education, respectively. It is possible that we observe significant difference depending on how

we categorize education levels, but we used the present categorization for comparability across studies.
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Figure 8: e∗ and demographic variables.

the CMW and CS (t(374) = 1.6787, p = 0.0940 in CMW; t(739) = 1.4113, p = 0.1586 in

CS).

Panel D shows that subjects who were working at the time of the survey are on

average closer to OEU rationality than those who were not (t(1180) = 2.2431, p = 0.0251

in CKMS; t(1114) = 2.4302, p = 0.0153 in CMW; t(1419) = 3.3470, p = 0.0008 in CS).

In panels E1 and E2, we classify subjects according to their Cognitive Reflection Test

score (CRT; Frederick, 2005) or average log reaction times in numerical Stroop task. CRT

consists of three questions, all of which have an intuitive and spontaneous, but incorrect,

answer, and a deliberative and correct answer. Frederick (2005) finds that CRT scores

(number of questions answered correctly) are correlated with other measures of cognitive

ability. In the numerical Stroop task, subjects are presented with a number, such as 888,

and are asked to identify the number of times the digit is repeated (in this example the

answer is 3, while more “intuitive” response is 8). It has been shown that response times

in this task capture the subject’s cognitive control ability.
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The average e∗ for those who correctly answered two questions or more of the CRT

is lower than the average for those who answered at most one question. Subjects with

lower response times in the numerical Stroop task have significantly lower e∗ (two-sample

t-test, t(1114) = −3.345, p = 0.0009).

One of the key findings in Choi et al. (2014) is that consistency with utility maximiza-

tion measured by CCEI was related with household wealth. When we look at the relation

between e∗ and household income, there is a negative trend but the differences across

income brackets are not statistically significant (bracket “0-2.5k” vs. “5k+” two-sample

t-test, t(533) = 1.6540, p = 0.0987; panel F1). Panel F2 presents similar non-significance

between subjects who earned more than 20 thousand USD annually or not in CMW

sample (two-sample t-test, t(1114) = −0.2301, p = 0.8180). When we compare poor

households (annual income less than 20 thousand USD) and wealthy households (annual

income more than 100 thousand USD) from the CS sample, average e∗ is significantly

smaller for the latter sample (two-sample t-test, t(887) = −3.5657, p = 0.0004).

4.3 Minimum Perturbation Test

Our discussion so far has sidestepped one issue. How are we to interpret the absolute

magnitude of e∗? When can we say that e∗ is large enough to reject consistency with

OEU rationality?

To answer this question, we present a statistical test of the hypothesis that an agent

is OEU rational. The test needs some assumptions, but it gives us a threshold level (a

critical value) for e∗. Any value of e∗ that exceeds the threshold indicates inconsistency

with OEU at some statistical significance level.

Our approach follows, roughly, the methodology laid out in Echenique et al. (2011)

and Echenique et al. (2016). First, we adopt the price perturbation interpretation of e in

Section 3.2. The advantage of doing so is that we can use the observed variability in price

to get a handle on the assumptions we need to make on perturbed prices. To this end,

let Dtrue = (pk, xk)Kk=1 denote a dataset and Dpert = (p̃k, xk)Kk=1 denote an “perturbed”

dataset. Prices p̃k are prices pk measured with error, or misperceived:

p̃ks = pksε
k
s for all s ∈ S and k ∈ K

where εks > 0 is a random variable.
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If the variance of ε is large, it will be easy to accommodate a dataset as OEU rational.

The larger is the variance of ε, the larger the magnitudes of e that can be rationalized as

consistent with OEU. So, our procedure is sensitive to the assumptions we make about

the variance of ε.

Our approach to get a handle on the variance of ε is to think of an agent who mistakes

true prices p with perturbed prices p̃. If the variance of ε is too large, the agent should

not mistake the distribution of p and p̃. In other words, the distributions of p and p̃

should be similar enough that an agent might plausibly confuse the two. Specifically, we

imagine an agent who conducts a statistical test for the variance of prices. If the true

variance of p is σ2
0 and the implied variance of p̃ is σ2

1 > σ2
0, then the agent would conduct

a test for the null of σ2 = σ2
0 against the alternative of σ2 = σ2

1. We want the variances

to be close enough that the agent might reasonably get inconclusive results from such a

test. Specifically, we assume the sum of type I and type II errors in this test is relatively

large.14

The details of how we design our test are below, but we can advance the main results.

See Figure 9. Each panel corresponds to our results for each of the datasets. The

probability of a type I error is ηI . The probability of a type II error is ηII . Recall that we

focus on situations when ηI +ηII is relatively large, as we want our consumer to plausibly

mistake the distributions of p and p̃. Consider, for example, our results for CKMS. The

outermost numbers assume that ηI + ηII = 0.7. For such numbers, the rejection rates

range from 3% to 41%. For the CS dataset, if we look at the second line of numbers,

where ηI + ηII = 0.65, we see that rejection rates range from 1% to 19%.

Overall, it is fair to say that rejection rates are modest. Smaller values of ηI + ηII

correspond to larger values of Var(ε), and therefore smaller rejection rates. The figure

also illustrates that the conclusions of the test are very sensitive to what one assumes

about Var(ε), through the assumptions about ηI and ηII . But if we look at the largest

rejection rates, for the largest values of ηI + ηII , we get 25% for CS, 27% for CMW, and

41% for CKMS. Many subjects in the CS, CMW and CKMS experiments are inconsistent

with OEU, but at least according to our statistical test, for most subjects the rejections

could be attributed to mistakes.

14The problem of variance is pervasive in statistical implementations of revealed preference tests, see

Varian (1990), Echenique et al. (2011), and Echenique et al. (2016) for example. The use of the sum of

type I and type II errors to calibrate a variance, is new to the present paper.
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Figure 9: Rejection rates under each combination of type I and type II error probabilities

(ηI , ηII ), from CKMS sample (A), CMW sample (B), and CS sample (C).

Rationale behind the test. We now turn to a more detailed exposition of how we

derive our test. Let H0 and H1 denote the null hypothesis that the true dataset Dtrue is

OEU rational and the alternative hypothesis that Dtrue is not OEU rational. To construct

our test, consider a number E∗, which is the result of the following optimization problem.

Given a dataset Dtrue = (pk, xk)Kk=1:

min
(vks ,λ

k,εks )s,k
max

k∈K,s,t∈S

εks
εkt

s.t. log µ∗s + log vks − log λk − log pks − log εks = 0

xks > xk
′

s′ =⇒ log vks ≤ log vk
′

s′ .

(13)

Under H0, the true dataset Dtrue = (pk, xk)Kk=1 is OEU rational. A slight modification

of Lemma 7 in Echenique and Saito (2015) then implies that there exist strictly positive

numbers ṽks , and λ̃k for s ∈ S and k ∈ K such that

log µ∗s + log ṽks − log λ̃k − log pks = 0 and xks > xk
′

s′ =⇒ log ṽks ≤ log ṽk
′

ts .
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Substituting the relationship p̃ks = pksε
k
s for all s ∈ S and k ∈ K yields

log µ∗s + log ṽks − log λ̃k − log p̃ks = log εks and xks > xk
′

s′ =⇒ log ṽks ≤ log ṽk
′

s′ ,

which implies that the tuple (ṽks , λ̃
k, εks)s,k satisfies the constraint in problem (13).

Letting E∗
(
(pk, xk)Kk=1

)
denote the optimal value of the problem (13), we have

E∗
(
(pk, xk)Kk=1

)
≤ max

k∈K,s,t∈S

εks
εks

= Ê

under the null hypothesis.

Then, we construct a test as follows:
reject H0 if

∫ ∞
E∗((pk,xk)Kk=1)

fÊ(z)dz < α

accept H0 otherwise

,

where α is the size of the test and fÊ is the density function of the distribution of

Ê = maxk,s,t ε
k
s/ε

k
t . Given a nominal size α, we can find a critical value Cα satisfying

Pr[Ê > Cα] = α; we set Cα = F−1
Ê

(1− α), where FÊ denotes the cumulative distribution

function of Ê . However, because E∗
(
(pk, xk)Kk=1

)
≤ Ê , the true size of the test is better

than α. Concretely,

size = Pr[E∗ > Cα] ≤ Pr[Ê > Cα] = α.

Parameter tuning. In order to perform the test, we need to obtain the distribution

of Ê and its critical value Cα given a significance level α. We obtain the distribution of

Ê by assuming that ε follows a log-normal distribution ε ∼ Λ(ν, ξ2). 15

The crucial step in our approach is the selection of parameters (ν, ξ2). It is natural to

choose these parameters so that there is no price perturbation on average (i.e., E[ε] = 1).

However, as we discussed above, there is no objective guide to choosing an appropriate

level of Var(ε). Therefore, we use variation in (relative) prices observed in the data.

15Note that parameters (ν, ξ2) correspond to the mean and the variance of the random variable in the

log-scale. In other words, log ε ∼ N(ν, ξ2). The moments of the log-normal distribution ε ∼ Λ(ν, ξ2) are

then calculated by E[ε] = exp(ν + ξ2/2) and Var(ε) = exp(2ν + ξ2)(exp(ξ2)− 1).
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We have assumed that p̃ks = pksε
k
s for all s ∈ S, k ∈ K, and the noise term ε is

independent of the random selection of budgets (pks)k,s. Hence,

Var(p̃) = Var(p) · Var(ε) + Var(p) · E[ε]2 + E[p]2 · Var(ε)

⇐⇒ Var(p̃)

Var(p)
= E[ε]2 +

(
1 +

E[p]2

Var(p)

)
Var(ε).

Given the observed variation in (pks)k,s, Var(ε) determines how much larger (or smaller,

in ratio) the variation of perturbed prices (p̃ks)k,s is relative to actual prices.

Our agent has trouble telling the two variances apart. More generally, the agent

has trouble telling the distributions of prices apart, that is why she is confusing actual

and perceived prices, but the distribution depends only on the variance; so we focus on

variance. Consider a hypothesis test for the null hypothesis that the variance of a normal

random variable with known mean has variance σ2
0 against the alternative that σ2 ≥ σ2

0.

Let σ̂2
n be the sample variance.

The agent performs an upper-tailed chi-squared test defined as

H0 : σ2 = σ2
0

H1 : σ2 > σ2
0

The test statistic is:

Tn =
(n− 1)σ̂2

n

σ2
0

where n is the sample size (i.e., the number of budget sets). The sampling distribution

of the test statistic Tn under the null hypothesis follows a chi-squared distribution with

n− 1 degrees of freedom.

We consider the probability ηI of rejecting the null hypothesis when it is true, a type I

error; and the probability ηII of failing to reject the null hypothesis when the alternative

σ2 = σ2
1 > σ2

0 is true, a type II error. The test rejects the null hypothesis that the

variance is σ2
0 if

Tn > χ2
1−α,n−1

where χ2
1−α,n−1 is the critical value of a chi-squared distribution with n − 1 degree of

freedom at the significance level α, defined by Pr[χ2 < χ2
1−α,n−1] = 1− ηI . 16

16An alternative approach, without assuming that a distribution for Tn, and based on a large sample

approximation to the distribution of Tn, yields very similar results. Calculations and empirical findings

are available from the authors upon request.
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Under the alternative hypothesis that σ2 = σ2
1 > σ2

0, the statistic (σ2
0/σ

2
1) · Tn follows

a chi-squared distribution (with n− 1 degrees of freedom). Then, the probability ηII of

making a type II error is given by

ηII = Pr[Tn < χ2
1−α,n−1 | H1 : σ2

1 > σ2
0 is true]

= Pr

[
σ2
0

σ2
1

· Tn <
σ2
0

σ2
1

· χ2
1−α,n−1

]
= Pr

[
χ2 <

σ2
0

σ2
1

· χ2
1−α,n−1

]
.

Let χ2
β,n−1 be the value that satisfies Pr[χ2 < χ2

β,n−1] = ηII . Then, given ηI and ηII ,

we obtain

Pr

[
χ2 <

σ2
0

σ2
1

· χ2
1−α,n−1

]
= ηII ⇐⇒ σ2

0

σ2
1

· χ2
1−α,n−1 = χ2

β,n−1 ⇐⇒
σ2
1

σ2
0

=
χ2
1−α,n−1

χ2
β,n−1

.

As a consequence, given a measured variance σ2
0, calculated from observed prices, and

assumed values for ηI and ηII , we can back out the minimum “detectable” value of the

variance σ2
1. From this variance of prices, we obtain Var(ε).

5 Perturbed Subjective Expected Utility

We now turn to the model of subjective expected utility, in which beliefs are not known.

Instead, beliefs are subjective and unobservable. The analysis will be analogous to what

we did for OEU, and therefore proceed at a faster pace. In particular, all the definitions

and results parallel those of the section on OEU. The proof of the main result (the

axiomatic characterization) is substantially more challenging here because both beliefs

and utilities are unknown: there is a classical problem in disentangling beliefs from utility.

The technique for solving this problem was introduced in Echenique and Saito (2015).

Definition 9. Let e ∈ R+. A dataset (xk, pk)Kk=1 is e-belief-perturbed SEU rational if

there exist µk ∈ ∆++ for each k ∈ K and a concave and strictly increasing function

u : R+ → R such that, for all k,

y ∈ B(pk, pk · xk) =⇒
∑
s∈S

µksu(ys) ≤
∑
s∈S

µksu(xks) (14)

and for each k, l ∈ K and s, t ∈ S

µks/µ
k
t

µls/µ
l
t

≤ 1 + e. (15)
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Note that the definition of e-belief-perturbed SEU rational differs from the defini-

tion of belief-perturbed OEU rationality, only in condition (15); establishing bounds the

perturbations. Here there is no objective probability from which we can evaluate the

deviation of the set {µk} of beliefs. Thus we evaluate perturbations among beliefs, as

in (15).

Remark 1. The constraint on the perturbation applies for each k, l ∈ K and s, t ∈ S, so

it implies for each k, l ∈ K and s, t ∈ S
1

1 + e
≤ µks/µ

k
t

µls/µ
l
t

≤ 1 + e.

Hence, when e = 0, it must be that µks/µ
k
t = µls/µ

l
t. This implies that µk = µl for a

dataset that is 0-belief perturbed SEU rational.

Next, we propose perturbed SEU rationality with respect to prices.

Definition 10. Let e ∈ R+. A dataset (xk, pk)Kk=1 is e-price-perturbed SEU rational if

there exist µ ∈ ∆++ and a concave and strictly increasing function u : R+ → R and

εk ∈ RS
+ for each k ∈ K such that, for all k,

y ∈ B(p̃k, p̃k · xk) =⇒
∑
s∈S

µsu(ys) ≤
∑
s∈S

µsu(xks), (16)

where for each k ∈ K and s ∈ S
p̃ks = pksε

k
s , (17)

and for each k, l ∈ K and s, t ∈ S
εks/ε

k
t

εls/ε
l
t

≤ 1 + e. (18)

Again, the definition differs from the corresponding definition of price-perturbed OEU

rationality only in condition (18), establishing bounds on perturbations. In condition

(18), we measure the size of the perturbations by

εks/ε
k
t

εls/ε
l
t

,

not εks/ε
k
t as in (9). This change is necessary to accommodate the existence of subjective

beliefs. By choosing subjective beliefs appropriately, one can neutralize the perturbation

in prices if εks/ε
k
t = εls/ε

l
t for all k, l ∈ K. That is, as long as εks/ε

k
t = εls/ε

l
t for all k, l ∈ K,

if we can rationalize the dataset by introducing the noise with some subjective belief µ,

then without using the noise, we can rationalize the dataset with another subjective belief

µ′ such that εksµ
′
s/ε

k
tµ
′
t = µs/µt.

Finally, we define utility-perturbed SEU rationality.
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Definition 11. Let e ∈ R+. A dataset (xk, pk)Kk=1 is e-utility-perturbed SEU rational

if there exist µ ∈ ∆++, a concave and strictly increasing function u : R+ → R, and

εk ∈ RS
+ for each k ∈ K such that, for all k,

y ∈ B(pk, pk · xk) =⇒
∑
s∈S

µsε
k
su(ys) ≤

∑
s∈S

µsε
k
su(xks), (19)

and for each k ∈ K and s, t ∈ S

1

1 + e
≤ εks/ε

k
t

εls/ε
l
t

≤ 1 + e. (20)

As in the previous section, given e, we can show that these three concepts of rationality

are equivalent.

Theorem 3. Let e ∈ R+ and D be a dataset. The following are equivalent:

• D is e-belief-perturbed SEU rational;

• D is e-price-perturbed SEU rational;

• D is e-utility-perturbed SEU rational.

In light of Theorem 3, we shall speak simply of e-perturbed SEU rationality to refer

to any of the above notions of perturbed SEU rationality.

Echenique and Saito (2015) prove that a dataset is SEU rational if and only if it

satisfies a revealed-preference axiom termed the Strong Axiom for Revealed Subjective

Expected Utility (SARSEU). SARSEU states that, for any test sequence (xkisi , x
k′i
s′i

)ni=1, if

each s appears as si (on the left of the pair) the same number of times it appears as s′i

(on the right), then
n∏
i=1

pkisi

p
k′i
s′i

≤ 1.

SARSEU is no longer necessary for perturbed SEU-rationality. This is easy to see,

as we allow the decision maker to have a different belief µk for each choice k, and reason

as in our discussion of SAROEU. Analogous to our analysis of OEU, we introduce a

perturbed version of SARSEU to capture perturbed SEU rationality. Let e ∈ R+.

Axiom 2 (e-Perturbed SARSEU (e-PSARSEU)). For any test sequence (xkisi , x
k′i
s′i

)ni=1 ≡ σ,

if each s appears as si (on the left of the pair) the same number of times it appears as s′i

(on the right), then
n∏
i=1

pkisi

p
k′i
s′i

≤ (1 + e)m(σ).
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We can easily see the necessity of e-PSARSEU by reasoning from the first order

conditions, as in our discussion of e-PSAROEU. The main result of this section shows that

e-PSARSEU is not only necessary for e-perturbed SEU rationality, but also sufficient.

Theorem 4. Let e ∈ R+ and D be a dataset. The following are equivalent:

• D is e-perturbed SEU rational;

• D satisfies e-PSARSEU.

It is easy to see that 0-PSARSEU is equivalent to SARSEU, and that by choosing e

to be arbitrarily large it is possible to rationalize any dataset. As a consequence, we shall

be interested in finding a minimal value of e that rationalizes a dataset: such “minimal e”

is also denoted by e∗.

We should mention, as in the case of OEU, that e∗ depends on the prices which a

decision maker faces. It is clear from e-PSARSEU that 1+e is bounded by the maximum

ratio of prices (i.e., maxk,k′∈K,s,s′∈S p
k
s/p

k′

s′ ).

6 Proofs

6.1 Proof of Theorems 1 and 2

First, we prove a lemma which shows Theorem 1 and is useful for the sufficiency part of

Theorem 2.

Lemma 1. Given e ∈ R+, let (xk, pk)Kk=1 be a dataset. The following statements are

equivalent:

1. (xk, pk)Kk=1 is e-belief-perturbed OEU rational.

2. There are strictly positive numbers vks , λk, µks , for s ∈ S and k ∈ K, such that

µksv
k
s = λkpks , xks > xk

′

s′ =⇒ vks ≤ vk
′

s′ , (21)

and for all k ∈ K and s, t ∈ S

1

1 + e
≤ µks/µ

k
t

µ∗s/µ
∗
t

≤ 1 + e. (22)

3. (xk, pk)Kk=1 is e-price-perturbed OEU rational.
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4. There are strictly positive numbers v̂ks , λ̂k, and εks for s ∈ S and k ∈ K, such that

µ∗sv̂
k
s = λ̂kεksp

k
s , xks > xk

′

s′ =⇒ v̂ks ≤ v̂k
′

s′ ,

and for all k ∈ K and s, t ∈ S

1

1 + e
≤ εks
εkt
≤ 1 + e.

5. (xk, pk)Kk=1 is e-utility-perturbed OEU rational.

6. There are strictly positive numbers v̂ks , λ̂k, and ε̂ks for s ∈ S and k ∈ K, such that

µ∗sε̂
k
s v̂

k
s = λ̂kpks , xks > xk

′

s′ =⇒ v̂ks ≤ v̂k
′

s′ ,

and for all k ∈ K and s, t ∈ S

1

1 + e
≤ ε̂ks
ε̂kt
≤ 1 + e.

Proof. By the standard way, the equivalence between 1 and 2, the equivalence between 3

and 4, and the equivalence between 5 and 6 hold. Moreover, it is easy to see the equiva-

lence between 4 and 6 with εks = 1/ε̂ks for each k ∈ K and s ∈ S. So to show the result,

it suffices to show that 2 and 4 are equivalent.

To show 4 implies 2, define v = v̂ and

µks =
µ∗s
εks

/(∑
s∈S

µ∗s
εks

)

for each k ∈ K and s ∈ S and

λk = λ̂k

/(∑
s∈S

µ∗s
εks

)

for each k ∈ K. Then, µk ∈ ∆++(S). Since µ∗sv̂
k
s = λ̂kεksp

k
s , we have

µksv
k
s = λkpks .

Moreover, for each k ∈ K and s, t ∈ S

εks
εkt

=
µks/µ

k
t

µ∗s/µ
∗
t

.
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Hence,
1

1 + e
≤ εks
εkt
≤ 1 + e.

To show that 2 implies 4, for all s ∈ S define v̂ = v and for all k ∈ K, λ̂k = λk. For

all k ∈ K and s ∈ S, define

εks =
µ∗s
µks
.

For each k ∈ K and s ∈ S, since µksu
k
s = λkpks ,

µ∗sv
k
s = λ̂kεksp

k
s .

Finally, for each k ∈ K and s, t ∈ S,

εks
εkt

=
µ∗s/µ

k
s

µ∗t/µ
k
t

=
µkt /µ

k
s

µ∗t/µ
∗
s

.

Therefore, we obtain
1

1 + e
≤ εks
εkt
≤ 1 + e.

6.1.1 Necessity of Theorem 2

Lemma 2. Given e ∈ R+, if a data set is e-belief-perturbed OEU rational, then the data

set satisfies e-PSAROEU.

Proof. Fix any sequence (xkisi , x
k′i
s′i

)ni=1 ≡ σ of pairs satisfies conditions (1) and (2). As-

suming differentiability of u and interior solution for simplicity, we have for each k ∈ K
and s ∈ S, µksu

′(xks) = λkpks , or
µks
µ∗s
u′(xks) = λkρks .

Then,
n∏
i=1

ρkisi

ρ
k′i
s′i

=
n∏
i=1

λk
′
i(µkisi/µ

∗
si

)u′(xkisi )

λki(µ
k′i
s′i
//µ∗s′i

)u′(x
k′i
s′i

)
=

n∏
i=1

u′(xkisi )

u′(x
k′i
s′i

)

n∏
i=1

µkisi/µ
∗
si

µ
k′i
s′i
/µ∗s′i

.

The second equality holds by condition (2). By condition (1), the first term is less than

one because of the concavity of u. In the following, we evaluate the second term. First,

for each (k, s) cancel out the same µks as much as possible both from the denominator

and the numerator. Then, the number of µks remained in the numerator is d(σ, k, s).
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Since the number of numerator and the denominator must be the same. The number of

remaining fraction is m(σ) ≡
∑

s∈S
∑

k∈K:d(σ,k,s)>0 d(σ, k, s). So by relabeling the index i

to j if necessary, we obtain

n∏
i=1

µkisi/µ
∗
si

µ
k′i
s′i
/µ∗s′i

=

m(σ)∏
j=1

µ
kj
sj /µ

∗
sj

µ
k′j
s′j
/µ∗s′j

.

Consider the corresponding sequence (x
kj
sj , x

k′j
s′j

)
m(σ)
j=1 . Since the sequence is obtained by

canceling out xks from the first element and the second element of the pairs the same

number of times; and since the original sequence (xkisi , x
k′i
s′i

)ni=1 satisfies condition (2), it

follows that (x
kj
sj , x

k′j
s′j

)
m(σ)
j=1 satisfies condition (2).

By condition (2), we can assume without loss of generality that kj = k′j for each j.

Therefore, by the condition on the perturbation,

m(σ)∏
j=1

µ
kj
sj /µ

∗
sj

µ
k′j
s′j
/µ∗s′j

≤ (1 + e)m(σ).

Hence,
n∏
i=1

ρkisi

ρ
k′i
s′i

≤ (1 + e)m(σ).

6.1.2 Sufficiency of Theorem 2

We need three more lemmas to prove the sufficiency.

Lemma 3. Given e ∈ R+, let a dataset (xk, pk)kk=1 satisfy e-PSAROEU. Suppose that

log(pks) ∈ Q for all k ∈ K and s ∈ S, log(µ∗s) ∈ Q for all s ∈ S, and log(1 + e) ∈ Q.

Then there are numbers vks , λk, µks , for s ∈ S and k ∈ K satisfying (21) and (22) in

Lemma 1.

Proof of Lemma 3 The proof is similar to the case in which e = 0. By log-linearizing

conditions (21) and (22) in Lemma 1, we have for all s ∈ S and k ∈ K, such that

log µks + log vks = log λk + log pks , (23)

xks > xk
′

s′ =⇒ log vks ≤ log vk
′

s′ , (24)
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and for all k ∈ K and s, t ∈ S

− log(1 + e) + log µ∗s − log µ∗t ≤ log µks − log µkt ≤ log(1 + e) + log µ∗s − log µ∗t . (25)

Matrix A looks as follows:



··· vks vkt vls vlt ··· ··· µks µkt µls µlt ··· ··· λk λl ··· p

...
...

...
...

...
...

...
...

...
...

...

(k,s) · · · 1 0 0 0 · · · · · · 1 0 0 0 · · · · · · −1 0 · · · − log pks

(k,t) · · · 0 1 0 0 · · · · · · 0 1 0 0 · · · · · · −1 0 · · · − log pks

(l,s) · · · 0 0 1 0 · · · · · · 0 0 1 0 · · · · · · 0 −1 · · · − log pls

(l,t) · · · 0 0 0 1 · · · · · · 0 0 0 1 · · · · · · 0 −1 · · · − log pls
...

...
...

...
...

...
...

...
...

...
...


.

Matrix B has additional rows as follows in addition to the rows in Echenique and Saito

(2015):



··· vks vkt vls vlt ··· ··· µks µkt µls µlt ··· ··· λk λl ··· p

...
...

...
...

...
...

...
...

...
...

...

· · · 0 0 0 0 · · · · · · −1 1 0 0 · · · · · · 0 0 · · · log(1 + e)− log µ∗s + log µ∗t

· · · 0 0 0 0 · · · · · · 1 −1 0 0 · · · · · · 0 0 · · · log(1 + e) + log µ∗s − log µ∗t

· · · 0 0 0 0 · · · · · · 0 0 1 −1 · · · · · · 0 0 · · · log(1 + e) + log µ∗s − log µ∗t

· · · 0 0 0 0 · · · · · · 0 0 −1 1 · · · · · · 0 0 · · · log(1 + e)− log µ∗s + log µ∗t
...

...
...

...
...

...
...

...
...

...
...


.

Matrix E is the same as in Echenique and Saito (2015).

The entries of A, B, and E are either 0, 1 or −1, with the exception of the last column

of A. Under the hypotheses of the lemma we are proving, the last column consists of

rational numbers. By Motzkin’s theorem, then, there is such a solution u to S1 if and

only if there is no rational vector (θ, η, π) that solves the system of equations and linear

inequalities

S2 :


θ · A+ η ·B + π · E = 0,

η ≥ 0,

π > 0.

Claim There exists a sequence (xkisi , x
k′i
s′i

)n
∗
i=1 ≡ σ of pairs that satisfies conditions (1)

and (2) in e-PSAROEU.

Proof. Denote the weight on the rows capturing log µks−log µkt ≤ log(1+e)+log µ∗s−log µ∗t

by θ(k, s, t). Then, notice that the corresponding constraint − log(1+e)+log µ∗s−log µ∗t ≤
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log µks − log µkt is denoted by θ(k, t, s). So for each k ∈ K and s ∈ S,

n(xks)− n′(xks) +
∑
t6=s

[
− θ(k, s, t) + θ(k, t, s)

]
= 0

Hence ∑
s∈S

[
n(xks)− n′(xks)

]
=
∑
s∈S

∑
t6=s

[
θ(k, s, t)− θ(k, t, s)

]
= 0

Claim
∏n∗

i=1

ρ
ki
si

ρ
k′
i

s′
i

> (1 + e)m(σ∗).

Proof. By the fact that the last column must sum up to zero and E has one at the last

column, we have

n∗∑
i=1

log
p
k′i
s′i

pkisi
+ log(1 + e)

∑
k∈K

∑
s∈S

∑
t6=s

θ(k, s, t) +
∑
k∈K

∑
s∈S

∑
t6=s

(θ(k, s, t)− θ(k, t, s)) log µ∗s = −π < 0.

Remember that for all k ∈ K and s ∈ S,

n(xks)− n′(xks) =
∑
t6=s

[
θ(k, s, t)− θ(k, t, s)

]
.

So for each s ∈ S

∑
k∈K

∑
s∈S

∑
t6=s

[
θ(k, s, t)− θ(k, t, s)

]
log µ∗s =

n∗∑
i=1

log
µ∗si
µ∗s′i

.

Hence,

0 > −π

=
n∗∑
i=1

log
p
k′i
s′i

pkisi
−

n∗∑
i=1

log
µ∗si
µ∗s′i

+ log(1 + e)
∑
k∈K

∑
s∈S

∑
t6=s

θ(k, s, t)

=
n∗∑
i=1

log
ρ
k′i
s′i

ρkisi
+ log(1 + e)

∑
k∈K

∑
s∈S

∑
t6=s

θ(k, s, t).

Since d(σ∗, k, s) = n(xks)−n′(xks) =
∑
t6=s

[
θ(k, s, t)− θ(k, t, s)

]
≤
∑
t6=s

θ(k, s, t), we have

m(σ∗) ≡
∑
s∈S

∑
k∈K:d(σ∗,k,s)>0

d(σ∗, k, s) =
∑
s∈S

∑
k∈K

min{n(xks)− n′(xks), 0} ≤
∑
s∈S

∑
k∈K

∑
t6=s

θ(k, s, t).
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Therefore

0 >
n∗∑
i=1

log
ρ
k′i
s′i

ρkisi
+ log(1 + e)

∑
k∈K

∑
s∈S

∑
t6=s

θ(k, s, t) ≥
n∗∑
i=1

log
ρ
k′i
s′i

ρkisi
+ log(1 + e)m(σ∗).

That is,
n∗∑
i=1

log
ρkisi

ρ
k′i
s′i

> m(σ∗) log(1 + e). This is a contradiction.

Lemma 4. Given e ∈ R+, let a dataset (xk, pk)kk=1 satisfy e-PSAROEU with respect to

µ∗. Then for all positive numbers ε, there exist a positive real numbers e′ ∈ [e, e + ε],

µ′s ∈ [µ∗s − ε, µ∗s + ε], and qks ∈ [pks − ε, pks ] for all s ∈ S and k ∈ K such that log qks ∈ Q

for all s ∈ S and k ∈ K, log(µ′s) ∈ Q for all s ∈ S, and log(1 + e′) ∈ Q, µ′ ∈ ∆++(S),

and the dataset (xk, qk)kk=1 satisfy e′-PSAROEU with respect to µ′.

Proof of Lemma 4 Consider the set of sequences that satisfy Conditions (1) and (2) in

PSAROEU(e):

Σ =

{
(xkisi , x

k′i
s′i

)ni=1 ⊂ X 2

∣∣∣∣∣ (xkisi , x
k′i
s′i

)ni=1 satisfies conditions (1) and (2)

in e-PSAROEU for some n

}
.

For each sequence σ ∈ Σ, we define a vector tσ ∈ NK2S2
as in Lemma 9.

Define δ as in Lemma 9. Then, δ is a K2S2-dimensional real-valued vector. If σ =

(xkisi , x
k′i
s′i

)ni=1, then

δ · tσ =
∑

((k,s),(k′,s′))∈(KS)2
δ((k, s), (k′, s′))tσ((k, s), (k′, s′)) = log

 n∏
i=1

ρkisi

ρ
k′i
s′i

 .

So the dataset satisfies e-PSAROEU with respect to µ if and only if δ ·tσ ≤ m(σ) log(1+e)

for all σ ∈ Σ.

Enumerate the elements in X in increasing order: y1 < y2 < · · · < yN . And fix an

arbitrary ξ ∈ (0, 1). We shall construct by induction a sequence {(εks(n))}Nn=1, where

εks(n) is defined for all (k, s) with xks = yn.

By the denseness of the rational numbers, and the continuity of the exponential

function, for each (k, s) such that xks = y1, there exists a positive number εks(1) such that

log(ρksε
k
s(1)) ∈ Q and ξ < εks(1) < 1. Let ε(1) = min{εks(1) | xks = y1}.

In second place, for each (k, s) such that xks = y2, there exists a positive εks(2) such

that log(ρksε
k
s(2)) ∈ Q and ξ < εks(2) < ε(1). Let ε(2) = min{εks(2) | xks = y2}.
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In third place, and reasoning by induction, suppose that ε(n) has been defined and

that ξ < ε(n). For each (k, s) such that xks = yn+1, let εks(n + 1) > 0 be such that

log(ρksε
k
s(n+1)) ∈ Q, and ξ < εks(n+1) < ε(n). Let ε(n+1) = min{εks(n+1) | xks = yn}.

This defines the sequence (εks(n)) by induction. Note that εks(n + 1)/ε(n) < 1 for all

n. Let ξ̄ < 1 be such that εks(n+ 1)/ε(n) < ξ̄.

For each k ∈ K and s ∈ S, let ρ̂ks = ρksε
k
s(n), where n is such that xks = yn. Choose

µ′ ∈ ∆++(S) such that for all s ∈ S log µ′s ∈ Q and µ′s ∈ [ξ̄µs, µs/ξ̄] for all s ∈ S. Such µ′

exists by the denseness of the rational numbers. Now for each k ∈ K and s ∈ S, define

qks =
ρ̂ks
µ′s
. (26)

Then, log qks = log ρ̂ks − log µ′s ∈ Q.

We claim that the dataset (xk, qk)Kk=1 satisfies e′-PSAROEU with respect to µ′. Let

δ∗ be defined from (qk)Kk=1 in the same manner as δ was defined from (ρk)Kk=1.

For each pair ((k, s), (k′, s′)) with xks > xk
′

s′ , if n and m are such that xks = yn and

xk
′

s′ = ym, then n > m. By definition of ε,

εks(n)

εk
′
s′ (m)

<
εks(n)

ε(m)
< ξ̄ < 1.

Hence,

δ∗((k, s), (k′, s′)) = log
ρksε

k
s(n)

ρk
′
s′ ε

k′
s′ (m)

< log
ρks
ρk
′
s′

+ log ξ̄ < log
ρks
ρk
′
s′

= δ((k, s), (k′, s′)).

Now, we choose e′ such that e′ ≥ e and log(1 + e′) ∈ Q.

Thus, for all σ ∈ Σ, δ∗ · tσ ≤ δ · tσ ≤ m(σ) log(1 + e) ≤ m(σ) log(1 + e′) as t· ≥ 0 and

the dataset (xk, pk)Kk=1 satisfies e-PSAROEU with respect to µ.

Thus the dataset (xk, qk)Kk=1 satisfies e′-PSAROEU with respect to µ′. Finally, note

that ξ < εks(n) < 1 for all n and each k ∈ K, s ∈ S. So that by choosing ξ close enough

to 1, we can take ρ̂ to be as close to ρ as desired. By the definition, we also can take µ′

to be as close to µ as desired. Consequently, by (26), we can take (qk) to be as close to

(pk) as desired. We also can take e′ to be as close to e as desired. �
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Lemma 5. Given e ∈ R+, let a dataset (xk, pk)kk=1 satisfy e-PSAROEU with respect to

µ. Then there are numbers vks , λk, µks , for s ∈ S and k ∈ K satisfying (21) and (22) in

Lemma 1.

Proof of Lemma 5 Consider the system comprised by (23), (24), and (25) in the

proof of Lemma 3. Let A, B, and E be constructed from the dataset as in the proof of

Lemma 3. The difference with respect to Lemma 3 is that now the entries of A4 may not

be rational. Note that the entries of E, B, and Ai, i = 1, 2, 3 are rational.

Suppose, towards a contradiction, that there is no solution to the system comprised

by (23), (24), and (25). Then, by the argument in the proof of Lemma 3 there is no

solution to System S1. Lemma 1 with F = R implies that there is a real vector (θ, η, π)

such that θ · A+ η · B + π · E = 0 and η ≥ 0, π > 0. Recall that B4 = 0 and E4 = 1, so

we obtain that θ · A4 + π = 0.

Consider (qk)Kk=1, µ
′, and e′ be such that the dataset (xk, qk)Kk=1 satisfies e′-PSAROEU

with respect to µ′, and log qks ∈ Q for all k and s, log µ′s for all s ∈ S, and log(1+e′) ∈ Q.

(Such (qk)Kk=1, µ
′, and e′ exists by Lemma 4.) Construct matrices A′, B′, and E ′ from

this dataset in the same way as A, B, and E is constructed in the proof of Lemma 3.

Note that only the prices, the objective probabilities, and the bounds are different. So

E ′ = E, B′ = B and A′i = Ai for i = 1, 2, 3. Only A′4 may be different from A4.

By Lemma 4, we can choose qk, µ′, and e′ such that |θ ·A′4 − θ ·A4| < π/2. We have

shown that θ · A4 = −π, so the choice of qk, µ′, and e′ guarantees that θ · A′4 < 0. Let

π′ = −θ · A′4 > 0.

Note that θ · A′i + η · B′i + π′Ei = 0 for i = 1, 2, 3, as (θ, η, π) solves system S2 for

matrices A, B and E, and A′i = Ai, B
′
i = Bi and Ei = 0 for i = 1, 2, 3. Finally, B4 = 0

so θ ·A′4 + η ·B′4 + π′E4 = θ ·A′4 + π′ = 0. We also have that η ≥ 0 and π′ > 0. Therefore

θ, η, and π′ constitute a solution to S2 for matrices A′, B′, and E ′.

Lemma 1 then implies that there is no solution to S1 for matrices A′, B′, and E ′.

So there is no solution to the system comprised by (23), (24), and (25) in the proof

of Lemma 3. However, this contradicts Lemma 3 because the dataset (xk, qk) satisfies

e′-PSAROEU with µ′, log(1 + e) ∈ Q, log µ′s ∈ Q for all s ∈ S, and log qks ∈ Q for all

k ∈ K and s ∈ S. �
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6.2 Proof of Theorems 3 and 4

First, we prove a lemma which proves Theorem 3 and is useful for the sufficiency part of

Theorem 4.

Lemma 6. Given e ∈ R+, let (xk, pk)Kk=1 be a dataset. The following statements are

equivalent:

1. (xk, pk)Kk=1 is e-belief-perturbed SEU rational.

2. There are strictly positive numbers vks , λk, µks , for s ∈ S and k ∈ K, such that

µksv
k
s = λkpks , xks > xk

′

s′ =⇒ vks ≤ vk
′

s′ , (27)

and for each k, l ∈ K and s, t ∈ S

µks/µ
k
t

µls/µ
l
t

≤ 1 + e. (28)

3. (xk, pk)Kk=1 is e-price-perturbed SEU rational.

4. There are strictly positive numbers v̂ks , λ̂k, µs, and εks for s ∈ S and k ∈ K, such

that

µsv̂
k
s = λ̂kεksp

k
s , xks > xk

′

s′ =⇒ v̂ks ≤ v̂k
′

s′ ,

and for all k, l ∈ K and s, t ∈ S

εks/ε
k
t

εls/ε
l
t

≤ 1 + e.

5. (xk, pk)Kk=1 is e-utility-perturbed SEU rational.

6. There are strictly positive numbers v̂ks , λ̂k, µs, and ε̂ks for s ∈ S and k ∈ K, such

that

µsε̂
k
s v̂

k
s = λ̂kpks , xks > xk

′

s′ =⇒ v̂ks ≤ v̂k
′

s′ ,

and for all k, l ∈ K and s, t ∈ S

ε̂ks/ε̂
k
t

ε̂ls/ε̂
l
t

≤ 1 + e.

Proof. By the standard way, the equivalence between 1 and 2, the equivalence between 3

and 4, and the equivalence between 5 and 6 hold. Moreover, it is easy to see the equiva-

lence between 4 and 6 with εks = 1/ε̂ks for each k ∈ K and s ∈ S. So to show the result,

it suffices to show that 2 and 4 are equivalent.
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To show 4 implies 2, define v = v̂ and

µks =
µs
εks

/(∑
s∈S

µs
εks

)

for each k ∈ K and s ∈ S and

λk = λ̂k

/(∑
s∈S

µs
εks

)

for each k ∈ K. Then, µk ∈ ∆++(S). Since µsv̂
k
s = λ̂kεksp

k
s , we have

µksv
k
s = λkpks .

Moreover, for each k, l ∈ K and s, t ∈ S

µks/µ
k
t

µls/µ
l
t

=
εkt /ε

k
s

εlt/ε
l
s

≤ 1 + e.

To show 2 implies 4, for all s ∈ S define v̂ = v and

µs =
∑
k∈K

µks
|K|

.

Then, µ ∈ ∆++(S). For all k ∈ K, λ̂k = λk. For all k ∈ K and s ∈ S, define

εks =
µs
µks
.

For each k ∈ K and s ∈ S, since µksv
k
s = λkpks ,

µsv
k
s = λ̂kεksp

k
s .

Finally, for each k, l ∈ K and s, t ∈ S,

εks/ε
k
t

εls/ε
l
t

=
µkt /µ

k
s

µlt/µ
l
s

≤ 1 + e.

6.2.1 Necessity of Theorem 4

Lemma 7. Given e ∈ R+, if a data set is e-belief-perturbed SEU rational then the data

set satisfies e-PSARSEU.
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Proof. Fix any sequence (xkisi , x
k′i
s′i

)ni=1 ≡ σ of pairs satisfies conditions (1)–(3). Assuming

differentiability of u and interior solution for simplicity, we have for each k ∈ K and

s ∈ S
µksu

′(xks) = λkpks .

Then,
n∏
i=1

pkisi

p
k′i
s′i

=
n∏
i=1

λk
′
iµkisiu

′(xkisi )

λkiµ
k′i
s′i
u′(x

k′i
s′i

)
=

n∏
i=1

u′(xkisi )

u′(x
k′i
s′i

)

n∏
i=1

µkisi

µ
k′i
s′i

.

The second equality holds by condition (3). By condition (1), the first term is less than

one because of the concavity of u. In the following, we evaluate the second term. First,

for each (k, s) cancel out the same µks as much as possible both from the denominator

and the numerator. Then, the number of µks remained in the numerator is d(σ, k, s).

Since the number of numerator and the denominator must be the same, the number of

remaining fraction is m(σ) ≡
∑

s∈S
∑

k∈K:d(σ,k,s)>0 d(σ, k, s). So by relabeling the index i

to j if necessary, we obtain
n∏
i=1

µkisi

µ
k′i
s′i

=

m(σ)∏
j=1

µ
kj
sj

µ
k′j
s′j

.

Consider the corresponding sequence (x
kj
sj , x

k′j
s′j

)
m(σ)
j=1 . Since the sequence is obtained by

canceling out xks from the first element and the second element of the pairs the same

number of times; and since the original sequence (xkisi , x
k′i
s′i

)ni=1 satisfies condition (2) and

(3), it follows that (x
kj
sj , x

k′j
s′j

)
m(σ)
j=1 satisfies condition (2) and (3).

By condition (2), we can assume without loss of generality that sj = s′j for each j.

Fix s∗ ∈ S. Then by the robustness condition, for each j ∈ {1, . . . ,m(σ)},

µ
kj
sj

µ
k′j
s′j

=
µ
kj
sj

µ
k′j
sj

≤ (1 + e)
µ
k′j
s∗

µ
kj
s∗

.

Moreover by condition (3),
m(σ)∏
j=1

µ
k′j
s∗

µ
kj
s∗

= 1.

Therefore,
m(σ)∏
j=1

µ
kj
si

µ
k′j
s′j

≤ (1 + e)m(σ)

n∏
j=1

µ
k′j
s∗

µ
kj
s∗

= (1 + e)m(σ),

and hence,
n∏
i=1

pkisi

p
k′i
s′i

≤ (1 + e)m(σ).
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Remark 2. We need to show the lemma because in the proof of sufficiency we weaken

the dual of the rationality condition.

6.2.2 Sufficiency of Theorem 4

We need three more lemmas to prove the theorem.

Lemma 8. Given e ∈ R+, let a dataset (xk, pk)kk=1 satisfy e-PSARSEU. Suppose that

log(pks) ∈ Q for all k and s and log(1 + e) ∈ Q. Then there are numbers vks , λk, µks , for

s ∈ S and k ∈ K satisfying (27) and (28) in Lemma 6.

Proof of Lemma 8 The proof is similar to the case in which e = 0. By log-linearizing

conditions (27) and (28) in Lemma 6, we have for all s ∈ S and k ∈ K, such that

log µks + log vks = log λk + log pks , (29)

xks > xk
′

s′ =⇒ log vks ≤ log vk
′

s′ , (30)

and for all k, l ∈ K and s, t ∈ S

log µks − log µkt − log µls + log µlt ≤ log(1 + e). (31)

Matrix A looks as follows:



··· vks vkt vls vlt ··· ··· µks µkt µls µlt ··· ··· λk λl ··· p

...
...

...
...

...
...

...
...

...
...

...

(k,s) · · · 1 0 0 0 · · · · · · 1 0 0 0 · · · · · · −1 0 · · · − log pks

(k,t) · · · 0 1 0 0 · · · · · · 0 1 0 0 · · · · · · −1 0 · · · − log pks

(l,s) · · · 0 0 1 0 · · · · · · 0 0 1 0 · · · · · · 0 −1 · · · − log pls

(l,t) · · · 0 0 0 1 · · · · · · 0 0 0 1 · · · · · · 0 −1 · · · − log pls
...

...
...

...
...

...
...

...
...

...
...


.

Matrix B has additional rows as follows in addition to the rows in Echenique and Saito

(2015).



··· vks vkt vls vlt ··· ··· µks µkt µls µlt ··· ··· λk λl ··· p

...
...

...
...

...
...

...
...

...
...

...

· · · 0 0 0 0 · · · · · · −1 1 1 −1 · · · · · · 0 0 · · · log(1 + e)

· · · 0 0 0 0 · · · · · · 1 −1 −1 1 · · · · · · 0 0 · · · log(1 + e)
...

...
...

...
...

...
...

...
...

...
...

 .
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Matrix E is the same as in Echenique and Saito (2015).

The entries of A, B, and E are either 0, 1 or −1, with the exception of the last column

of A. Under the hypotheses of the lemma we are proving, the last column consists of

rational numbers. By Motzkin’s theorem, then, there is such a solution u to S1 if and

only if there is no rational vector (θ, η, π) that solves the system of equations and linear

inequalities

S2 :


θ · A+ η ·B + π · E = 0,

η ≥ 0,

π > 0.

Claim There exists a sequence (xkisi , x
k′i
s′i

)n
∗
i=1 of pairs that satisfies conditions (1) and (3)

in e-PSARSEU.

Proof. The same as the case in which e = 0. From matrix B, we obtain a chain z >

· · · > z′. Define xk1s1 = z and x
k′1
s′1

= z′. By (30), we have −1 in the column of vk1s1 and 1 in

the column v
k′1
s′1

. So these −1 and 1 are canceled out in A1. By repeating this, we obtain

a sequence (xkisi , x
k′i
s′i

)n
∗
i=1 of pairs that satisfies Condition (1).

Claim The sequence (xkisi , x
k′i
s′i

)n
∗
i=1 ≡ σ∗ satisfies condition (2) in e-PSARSEU.

Proof. Denote the weight on the rows capturing
µks/µ

k
t

µls/µ
l
t
≤ 1 + e by θ(k, l, s, t). Note that

µlt/µ
l
s

µkt /µ
k
s

=
µks/µ

k
t

µls/µ
l
t
, so we only have the constraint

µks/µ
k
t

µls/µ
l
t
≤ 1 + e but not

µlt/µ
l
s

µkt /µ
k
s
≤ 1 + e;

hence we will not have θ(l, k, t, s). On the other hand, we need to have the constraint
µls/µ

l
t

µks/µ
k
t
≤ 1 + e which is equivalent to

µks/µ
k
t

µls/µ
l
t
≥ 1/(1 + e). This constraint corresponds to

θ(l, k, s, t).

Let n(xks) ≡ #{i | xks = xkisi} and n′(xks) ≡ #{i | xks = x
k′i
s′i
}.

For each k ∈ K and s ∈ S, in the column corresponding to µks , remember that we

have 1 if we have xks = xkisi for some i and −1 if we have xks = x
k′i
s′i

for some i. This

is because a row in A must have 1 (−1) in the column vks if and only if it has 1 (−1,

respectively) in the column µks . So in the column in matrix A, we have n(xks)− n′(xks).
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Now we consider matrix B. In the column of µks , we have −1 in the row multiplied by

θ(k, l, s, t) and 1 in the row multiplied by θ(l, k, s, t). So we also have−
∑

l 6=k
∑

t6=s θ(k, l, s, t)+∑
l 6=k
∑

t6=s θ(l, k, s, t).

For each k ∈ K and s ∈ S, the column corresponding to µks of matrices A and B

must sum up to zero; so we have

n(xks)− n′(xks)−
∑
l 6=k

∑
t6=s

θ(k, l, s, t) +
∑
l 6=k

∑
t6=s

θ(l, k, s, t) = 0.

Therefore, for each s,∑
k∈K

(
n(xks)− n′(xks)

)
=
∑
k∈K

[∑
l 6=k

∑
t6=s

θ(k, l, s, t)−
∑
l 6=k

∑
t6=s

θ(l, k, s, t)

]
= 0.

Claim
∏n∗

i=1

p
ki
si

p
k′
i

s′
i

> (1 + e)m(σ∗).

Proof. By the fact that the last column must sum up to zero and E has one at the last

column, we have

n∗∑
i=1

log
p
k′i
s′i

pkisi
+

(∑
k∈K

∑
l 6=k

∑
s∈S

∑
t6=s

θ(k, l, s, t)

)
log(1 + e) = −π < 0.

Hence, by multiplying −1, we have

n∗∑
i=1

log
pkisi

p
k′i
s′i

−

(∑
k∈K

∑
l 6=k

∑
s∈S

∑
t6=s

θ(k, l, s, t)

)
log(1 + e) > 0.

Remember that for all k ∈ K and s ∈ S,

n(xks)− n′(xks) = +
∑
l 6=k

∑
t6=s

θ(k, l, s, t)−
∑
l 6=k

∑
t6=s

θ(l, k, s, t) ≤
∑
l 6=k

∑
t6=s

θ(k, l, s, t).

Since d(σ∗, k, s) = n(xks)− n′(xks), we have

m(σ∗) ≡
∑
s∈S

∑
k∈K:d(σ∗,k,s)>0

d(σ∗, k, s)

=
∑
s∈S

∑
k∈K

max{n(xks)− n′(xks), 0}

≤
∑
s∈S

∑
k∈K

∑
l 6=k

∑
t6=s

θ(k, l, s, t).
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Therefore

n∗∑
i=1

log
pkisi

p
k′i
s′i

>

(∑
k∈K

∑
l 6=k

∑
s∈S

∑
t6=s

θ(k, l, s, t)

)
log(1 + e)

≥ m(σ∗) log(1 + e).

This is a contradiction.

Let X = {xks | k ∈ K, s ∈ S}.

Lemma 9. Given e ∈ R+, let a dataset (xk, pk)kk=1 satisfy e-PSARSEU. Then for all

positive numbers ε, there exist a positive real number e′ ∈ [e, e+ε] and qks ∈ [pks−ε, pks ] for

all s ∈ S and k ∈ K such that log qks ∈ Q and the dataset (xk, qk)kk=1 satisfy e′-PSARSEU.

Proof of Lemma 9 Consider the set of sequences that satisfy Conditions (1), (2), and

(3) in e-PSARSEU:

Σ =

{
(xkisi , x

k′i
s′i

)ni=1 ⊂ X 2

∣∣∣∣∣ (xkisi , x
k′i
s′i

)ni=1 satisfies conditions (1), (2), and (3)

in e-PSARSEU for some n

}
.

For each sequence σ ∈ Σ, we define a vector tσ ∈ NK2S2
. For each pair (xkisi , x

k′i
s′i

), we shall

identify the pair with ((ki, si), (k
′
i, s
′
i)). Let tσ((k, s), (k′, s′)) be the number of times that

the pair (xks , x
k′

s′ ) appears in the sequence σ. One can then describe the satisfaction of

e-PSARSEU by means of the vectors tσ. Observe that t depends only on (xk)Kk=1 in the

dataset (xk, pk)Kk=1. It does not depend on prices.

For each ((k, s), (k′, s′)) such that xks > xk
′

s′ , define δ((k, s), (k′, s′)) = log(pks/p
k′

s′ ). And

define δ((k, s), (k′, s′)) = 0 when xks ≤ xk
′

s′ . Then, δ is a K2S2-dimensional real-valued

vector. If σ = (xkisi , x
k′i
s′i

)ni=1, then

δ · tσ =
∑

((k,s),(k′,s′))∈(KS)2
δ((k, s), (k′, s′))tσ((k, s), (k′, s′)) = log

 n∏
i=1

pkisi

p
k′i
s′i

 .

So the dataset satisfies e-PSARSEU if and only if δ ·tσ ≤ m(σ) log(1+e) for all σ ∈ Σ.

Enumerate the elements in X in increasing order: y1 < y2 < · · · < yN . And fix an

arbitrary ξ ∈ (0, 1). We shall construct by induction a sequence {(εks(n))}Nn=1, where

εks(n) is defined for all (k, s) with xks = yn.
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By the denseness of the rational numbers, and the continuity of the exponential

function, for each (k, s) such that xks = y1, there exists a positive number εks(1) such that

log(pksε
k
s(1)) ∈ Q and ξ < εks(1) < 1. Let ε(1) = min{εks(1) | xks = y1}.

In second place, for each (k, s) such that xks = y2, there exists a positive εks(2) such

that log(pksε
k
s(2)) ∈ Q and ξ < εks(2) < ε(1). Let ε(2) = min{εks(2) | xks = y2}.

In third place, and reasoning by induction, suppose that ε(n) has been defined and

that ξ < ε(n). For each (k, s) such that xks = yn+1, let εks(n + 1) > 0 be such that

log(pksε
k
s(n+1)) ∈ Q, and ξ < εks(n+1) < ε(n). Let ε(n+1) = min{εks(n+1) | xks = yn}.

This defines the sequence (εks(n)) by induction. Note that εks(n + 1)/ε(n) < 1 for all

n. Let ξ̄ < 1 be such that εks(n+ 1)/ε(n) < ξ̄.

For each k ∈ K and s ∈ S, let qks = pksε
k
s(n), where n is such that xks = yn. We claim

that the dataset (xk, qk)Kk=1 satisfies e-PSARSEU. Let δ∗ be defined from (qk)Kk=1 in the

same manner as δ was defined from (pk)Kk=1.

For each pair ((k, s), (k′, s′)) with xks > xk
′

s′ , if n and m are such that xks = yn and

xk
′

s′ = ym, then n > m. By definition of ε,

εks(n)

εk
′
s′ (m)

<
εks(n)

ε(m)
< ξ̄ < 1.

Hence,

δ∗((k, s), (k′, s′)) = log
pksε

k
s(n)

pk
′
s′ ε

k′
s′ (m)

< log
pks
pk
′
s′

+ log ξ̄ < log
pks
pk
′
s′

= δ((k, s), (k′, s′)).

Now we choose e′ such that e′ ≥ e and log(1 + e′) ∈ Q.

Thus, for all σ ∈ Σ, δ∗ · tσ ≤ δ · tσ ≤ m(σ) log(1 + e) ≤ m(σ) log(1 + e′) as t· ≥ 0 and

the dataset (xk, pk)Kk=1 satisfies e-PSARSEU.

Thus the dataset (xk, qk)Kk=1 satisfies e′-PSARSEU. Finally, note that ξ < εks(n) < 1

for all n and each k ∈ K, s ∈ S. So that by choosing ξ close enough to 1 we can take (qk)

to be as close to (pk) as desired. We also can take e′ to be as close to e as desired. �

Lemma 10. Given e ∈ R+, let a dataset (xk, pk)kk=1 satisfy e-PSARSEU. Then there are

numbers vks , λk, µks , for s ∈ S and k ∈ K satisfying (27) and (28) in Lemma 6.
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Proof of Lemma 10 Consider the system comprised by (29), (30), and (31) in the

proof of Lemma 8. Let A, B, and E be constructed from the dataset as in the proof of

Lemma 8. The difference with respect to Lemma 8 is that now the entries of A4 may not

be rational. Note that the entries of E, B, and Ai, i = 1, 2, 3 are rational.

Suppose, towards a contradiction, that there is no solution to the system comprised

by (29), (30), and (31). Then, by the argument in the proof of Lemma 8 there is no

solution to System S1. Lemma 1 with F = R implies that there is a real vector (θ, η, π)

such that θ · A+ η · B + π · E = 0 and η ≥ 0, π > 0. Recall that B4 = 0 and E4 = 1, so

we obtain that θ · A4 + π = 0.

Let (qk)Kk=1 vectors of prices and a positive real number e′ be such that the dataset

(xk, qk)Kk=1 satisfies e′-PSARSEU and log qks ∈ Q for all k and s and log(1 + e′) ∈ Q.

(Such (qk)Kk=1 and e′ exists by Lemma 9.) Construct matrices A′, B′, and E ′ from this

dataset in the same way as A, B, and E is constructed in the proof of Lemma 8. Since

only prices qk and the bound e′ are different in this dataset, only A′4 may be different

from A4. So E ′ = E, B′ = B and A′i = Ai for i = 1, 2, 3.

By Lemma 9, we can choose prices qk such that |θ · A′4 − θ · A4| < π/2. We have

shown that θ · A4 = −π, so the choice of prices qk guarantees that θ · A′4 < 0. Let

π′ = −θ · A′4 > 0.

Note that θ · A′i + η · B′i + π′Ei = 0 for i = 1, 2, 3, as (θ, η, π) solves system S2 for

matrices A, B and E, and A′i = Ai, B
′
i = Bi and Ei = 0 for i = 1, 2, 3. Finally, B4 = 0

so θ ·A′4 + η ·B′4 + π′E4 = θ ·A′4 + π′ = 0. We also have that η ≥ 0 and π′ > 0. Therefore

θ, η, and π′ constitute a solution to S2 for matrices A′, B′, and E ′.

Lemma 1 then implies that there is no solution to S1 for matrices A′, B′, and E ′.

So there is no solution to the system comprised by (29), (30), and (31) in the proof

of Lemma 8. However, this contradicts Lemma 8 because the dataset (xk, qk) satisfies

e′-PSARSEU, log(1 + e) ∈ Q, and log qks ∈ Q for all k ∈ K and s ∈ S. �
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